Skip to main content
Log in

Flame-retardant epoxy resin based on aluminum monomethylphosphinate

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Aluminum monomethylphosphinate (MeP-Al) was synthesized and applied as a flame retardant for epoxy resin (EP). The structure of MeP-Al was characterized with FTIR, 1H NMR, 31P NMR and XRF. Curing reaction monitoring, thermal analysis, evolved gas and solid residue analysis, flammability tests (LOI, UL 94), microcombustion calorimeter and chemical analysis of residues were used. 20 mass% of MeP-Al provides EP with desired flame retardancy and anti-dripping property. The formulation passes the UL 94 V0 rating with LOI value of 29.6 %. MeP-Al mainly acts in the solid phase, and minority acts in the gas phase. P–H bond in MeP-Al can react with the unsaturated bond of compounds coming from decomposition of EP to form the condensed and stable phosphate salts in the solid phase. The firm char is a good barrier to avoid heat transfer and progressive degrading of the inner material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Paluvai NR, Mohanty S, Nayak SK. Synthesis and modifications of epoxy resins and their composites: a review. Polym-Plast Technol. 2014;53:1723–58.

    Article  CAS  Google Scholar 

  2. Levchik SV, Weil ED. A review of current flame retardant systems for epoxy resins. J Fire Sci. 2006;24:345–64.

    Article  CAS  Google Scholar 

  3. Xiao D, Li Z, Juan SD, Gohs U, Wagenknecht U, Voit B, Wang DY. Preparation, fire behavior and thermal stability of a novel flame retardant polypropylene system. J Therm Anal Calorim. 2016;125:321–9.

    Article  CAS  Google Scholar 

  4. Zhang L, Wang YC, Liu Q. Synergistic effects between silicon-containing flame retardant and DOPO on flame retardancy of epoxy resins. J Therm Anal Calorim. 2016;123:1343–50.

    Article  CAS  Google Scholar 

  5. Kemmlein S, Herzke D, Law RJ. Brominated flame retardants in the European chemicals policy of REACH-Regulation and determination in materials. J Chromatogr A. 2009;1216:320–33.

    Article  CAS  Google Scholar 

  6. Burreau S, Zebühr Y, Broman D, Ishaq R. Biomagnification of PBDEs and PCBs in feed webs from the Baltic Sea and the northern Atalantic Ocean. Sci Total Environ. 2006;366:659–72.

    Article  CAS  Google Scholar 

  7. Jiao CM, Zhuo JL, Chen XL. Flame retardant epoxy resin based on bisphenol A epoxy resin modified by phosphoric acid. J Therm Anal Calorim. 2013;114:253–9.

    Article  CAS  Google Scholar 

  8. Zhang S, Liu F, Peng H, Peng X, Jiang S, Wang J. Preparation of novel C-6 position carboxyl corn starch by a green method and its application in flame retardance of epoxy resin. Ind Eng Chem Res. 2015;54:11944–52.

    Article  CAS  Google Scholar 

  9. Laachachia A, Burgerab N, Apaydina K, Sonnierc R, Ferriolb M. Is expanded graphite acting as flame retardant in epoxy resin? Polym Degrad Stab. 2015;117:22–9.

    Article  Google Scholar 

  10. Döring M, Diederichs J, Non-reactive-fillers in innovative flame retardants in E&E applications, 2nd ed. pinfa: Brussels, Brussels; 2009, pp. 26–7.

  11. Chen XL, Ma CY, Jiao CM. Synergistic effects between iron-graphene and ammonium polyphosphate in flame-retardant thermoplastic polyurethane. J Therm Anal Calorim. 2016;. doi:10.1007/s10973-016-5494-7.

    Google Scholar 

  12. Krishnadevi K, Selvaraj V. Development of halogen-free flame retardant phosphazene and rice husk ash incorporated benzoxazine blended epoxy composites for microelectronic applications. New J Chem. 2015;39:6555–67.

    Article  CAS  Google Scholar 

  13. Hua J, Shan J, Wen D, Liu X, Zhao J, Tong Z. Flame retardant, mechanical properties and curing kinetics of DOPO-based epoxy resins. Polym Degrad Stab. 2014;109:218–25.

    Article  Google Scholar 

  14. Chen XL, Song WK, Liu JB, Jiao CM, Qian Y. Synergistic flame-retardant effects between aluminum hypophosphite and expandable graphite in silicone rubber composites. J Therm Anal Calorim. 2015;120:1819–26.

    Article  CAS  Google Scholar 

  15. Tilliette V, Schmidt LE, Ghoul C, Schaal S. Environmentally friendly flame retardant epoxy for electrical insulation. The 2008 IEEE international symposium on electrical insulation. 2008; 1–2:492.

  16. Hoerold S. Flame-retarding thermosetting compositions. US Patent 6,420,459 (2002).

  17. Döring M, Diederichs J. Non-Reactive-Fillers. In innovative flame retardants in E&E applications. 2nd ed. Brussels: pinfa. 2009; pp. 25–26.

  18. Liu X, Liu J, Chen J, Cai S, Hu C. Novel flame-retardant epoxy composites containing aluminium β-carboxylethylmethylphosphinate. Polym Eng Sci. 2015;55:657–63.

    Article  CAS  Google Scholar 

  19. Peters EN, Braidwood CL. Flame retardant composition and method. US Patent 20070080330 A1 (2007).

  20. Liu X, Liu J, Guo Y, Cakmak M. influence of structure of the metal salts of phosphinates on the performance of the fire-retardant polymers. AIP Conf Proc. 2015;1664:1–5.

    Google Scholar 

  21. Liu X, Liu J, Cai S. Comparative study of aluminum diethylphosphinate and aluminum methylethylphosphinate-filled epoxy flame-retardant composites. Polym Compos. 2012;33:918–26.

    Article  CAS  Google Scholar 

  22. Liu J, Chen J, Liu X, Sun S, Cai S. Synthesis of aluminum methylcyclohexyl-phosphinate and its use as flame retardant for epoxy resin. Fire Mater. 2014;38:155–65.

    Article  CAS  Google Scholar 

  23. Liu X, Liu J, Sun S, Chen J, Cai S. Novel flame-retardant epoxy based on zinc methylethyl phosphinates. Fire Mater. 2014;38:599–608.

    Article  CAS  Google Scholar 

  24. Wang J, Qian L, Xu B, Xi W, Liu X. Synthesis and characterization of aluminum poly-hexamethylenephosphinate and its flame-retardant application in epoxy resin. Polym Degrad Stab. 2015;122:8–17.

    Article  CAS  Google Scholar 

  25. Albouy D, Brun A, Munoz A, Etemad-Moghadam G. New(R-hydroxyalkyl) phosphorus amphiphiles: synthesis and dissociation constants. J Org Chem. 1998;63:7223–30.

    Article  CAS  Google Scholar 

  26. Wang G, Shen R, Xu Q, Goto M, Zhao Y, Han LB. Stereospecific coupling of h-phosphinates and secondary phosphine oxides with amines and alcohols: a general method for the preparation of optically active organophosphorus acid derivatives. J Org Chem. 2010;75:3890–2.

    Article  CAS  Google Scholar 

  27. Ashmus RA, Lowary TL. Synthesis of carbohydrate methyl phosphoramidates. Org Lett. 2014;6:2518–21.

    Article  Google Scholar 

  28. Laachachia A, Cocheza M, Leroyb E, Ferriola M, Lopez-Cuestab JM. Fire retardant systems in poly(methyl methacrylate): interactions between metal oxide nanoparticles and phosphinates. Polym Degrad Stab. 2007;92:61–9.

    Article  Google Scholar 

  29. Braun U, Bahr H, Sturm H, Schartel B. Flame retardancy mechanisms of metal phosphinates and metal phosphinates in combination with melamine cyanurate in glass-fiber reinforced poly(1,4-butylene terephthalate): the influence of metal cation. Polym Adv Technol. 2008;9:680–92.

    Article  Google Scholar 

  30. Lewin M, Endo M. Catalysis of intumescent flame retardancy of polypropylene by metallic compounds. Polym Adv Technol. 2003;14:3–11.

    Article  CAS  Google Scholar 

  31. Lewin M. Synergism and catalysis in flame retardancy of polymers. Polym Adv Technol. 2001;12:215–22.

    Article  CAS  Google Scholar 

  32. Plage B, Schulten H. Pyrolysis-field ionization mass spectrometry of epoxy resins. Macromolecules. 1988;21:2018–27.

    Article  CAS  Google Scholar 

  33. Ahamad T, Alshehri SM. Thermal degradation and evolved gas analysis: a polymeric blend of urea formaldehyde (UF) and epoxy (DGEBA) resin. Arab J Chem. 2014;7:1140–7.

    Article  CAS  Google Scholar 

  34. Mertzel E, Koenig JL. Application of FT-IR and NMR to epoxy resins. Adv Polym Sci. 1970;75:73–112.

    Article  Google Scholar 

  35. Levchik SV, Weil ED. Review thermal decomposition, combustion and flame-retardancy of epoxy resins—a review of the recent literature. Polym Int. 2004;53:1901–29.

    Article  CAS  Google Scholar 

  36. Xu Q, Han LB. Metal-catalyzed additions of H-P(O) bonds to carbon–carbon unsaturated bonds. J Organomet Chem. 2011;696:130–40.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by the national high-tech r&d program of China (863 program) [2015AA033406] and the key project of nature science founding of Hubei [ZRZ2014000060].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xueqing Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, Q., Peng, P., Peng, S. et al. Flame-retardant epoxy resin based on aluminum monomethylphosphinate. J Therm Anal Calorim 128, 201–210 (2017). https://doi.org/10.1007/s10973-016-5907-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-016-5907-7

Keywords

Navigation