Skip to main content
Log in

Decomposition kinetics of materials combining biomass and electronic waste

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The disposal of waste from electrical and electronic equipment is an actual problem of industrialized countries. In the present work, thermal decomposition of different materials has been studied in a thermobalance at different heating rates. Kinetic models are proposed for the pyrolysis, gasification and combustion of crushed wood pellets (CWP), halogen-free electrical wires (EWs) and printed circuit boards (PCBs). Three different heating rates were used at each atmosphere condition. One set of parameters can explain all the experiments at the different atmospheres and at the three different heating rates used. In the case of CWP, a model considering three independent first-order reactions gave very good correlations all the heating rates tested both in inert and oxidant atmosphere. The decomposition of synthetic materials (EW and PCB) is modeled by using nth order kinetics. On the other hand, mixtures of these three materials have been prepared and tested for decomposition behavior. A weighted sum of the curves simulated using kinetics of the materials separately gives a good concordance with the experimental curve in the case of PCBs, indicating that there is not chemical interaction between CWP and PCBs when heated and decomposed. This would indicate that the production of pollutants in the decomposition will not be affected by the presence of the other material. Nevertheless, a strong interaction is found with the mixtures between biomass and EW.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Baldé CP, Wang, F., Kuehr, R., Huisman, J. The global e-waste monitor—2014. United Nations University, IAS—SCYCLE. 2015.

  2. Conesa JA, Egea S, Moltó J, Ortuño N, Font R. Decomposition of two types of electric wires considering the effect of the metal in the production of pollutants. Chemosphere. 2013;91(2):118–23. doi:10.1016/j.chemosphere.2012.11.014.

    Article  CAS  Google Scholar 

  3. Goosey M, Kellner R. Recycling technologies for the treatment of end of life printed circuit boards (PCBs). Circuit World. 2003;29(3):33–7. doi:10.1108/03056120310460801.

    Article  CAS  Google Scholar 

  4. Kantarelis E, Donaj P, Yang W, Zabaniotou A. Sustainable valorization of plastic wastes for energy with environmental safety via high-temperature pyrolysis (HTP) and high-temperature steam gasification (HTSG). J Hazard Mater. 2009;167(1–3):675–84.

    Article  CAS  Google Scholar 

  5. Conesa JA, Moltó J, Font R, Egea S. Polyvinyl chloride and halogen-free electric wires thermal decomposition. Ind Eng Chem Res. 2010;49(22):11841–7. doi:10.1021/ie101265e.

    Article  CAS  Google Scholar 

  6. Grønli MG, Várhegyi G, Di Blasi C. Thermogravimetric analysis and devolatilization kinetics of wood. Ind Eng Chem Res. 2002;41(17):4201–8.

    Article  Google Scholar 

  7. Ortuño N, Moltó J, Egea S, Font R, Conesa JA. Thermogravimetric study of the decomposition of printed circuit boards from mobile phones. J Anal Appl Pyrol. 2013;103:189–200.

    Article  Google Scholar 

  8. Brebu M, Vasile C, Rovana Antonie S, Chiriac M, Precup M, Yang J, et al. Study of the natural ageing of PVC insulation for electrical cables. Polym Degrad Stab. 2000;67(2):209–21.

    Article  CAS  Google Scholar 

  9. Bene M, Plaek V, Matuschek G, Kettrup AA, Gyryov K, Emmerich WD, et al. Lifetime simulation and thermal characterization of PVC cable insulation materials. J Therm Anal Calorim. 2005;82(3):761–8.

    Article  Google Scholar 

  10. Dong C, Yang Y, Jin B, Horio M. The pyrolysis of sawdust and polyethylene in TG and U-shape tube reactor. Waste Manag. 2007;27(11):1557–61. doi:10.1016/j.wasman.2006.10.021.

    Article  CAS  Google Scholar 

  11. Kim MR, Buonomo EL, Bonelli PR, Cukierman AL. The thermochemical processing of municipal solid wastes: Thermal events and the kinetics of pyrolysis. Energy Sources Part A Recovery Util Environ Eff. 2010;32(13):1207–14. doi:10.1080/15567030802665992.

    Article  CAS  Google Scholar 

  12. Ortuño N, Moltó J, Conesa JA, Font R. Formation of brominated pollutants during the pyrolysis and combustion of tetrabromobisphenol A at different temperatures. Environ Pollut. 2014;191:31–7.

    Article  Google Scholar 

  13. Várhegyi G, Grønli MG, Di Blasi C. Effects of sample origin, extraction, and hot-water washing on the devolatilization kinetics of chestnut wood. Ind Eng Chem Res. 2004;43(10):2356–67.

    Article  Google Scholar 

  14. Bach QV, Tran KQ, Skreiberg O, Khalil RA, Phan AN. Effects of wet torrefaction on reactivity and kinetics of wood under air combustion conditions. Fuel. 2014;137:375–83. doi:10.1016/j.fuel.2014.08.011.

    Article  CAS  Google Scholar 

  15. Caballero JA, Conesa JA. Mathematical considerations for nonisothermal kinetics in thermal decomposition. J Anal Appl Pyrol. 2005;73(1):85–100.

    Article  CAS  Google Scholar 

  16. Martín-Gullón I, Gómez-Rico MF, Fullana A, Font R. Interrelation between the kinetic constant and the reaction order in pyrolysis. J Anal Appl Pyrol. 2003;68–69:645–55. doi:10.1016/s0165-2370(03)00032-9.

    Article  Google Scholar 

  17. Conesa JA, Rey L. Thermogravimetric and kinetic analysis of the decomposition of solid recovered fuel from municipal solid waste. J Therm Anal Calorim. 2015;120(2):1233. doi:10.1007/s10973-015-4396-4.

    Article  CAS  Google Scholar 

  18. Conesa JA, Domene A. Biomasses pyrolysis and combustion kinetics through n-th order parallel reactions. Thermochim Acta. 2011;523(1–2):176–81. doi:10.1016/j.tca.2011.05.021.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Support for this work was provided Spanish Ministry of Culture and Sport and by the CTQ2013-41006-R project from the Ministry of Economy and Competitiveness (Spain) and the PROMETEOII/2014/007 project from the Valencian Community Government (Spain).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan A. Conesa.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 879 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Conesa, J.A., Soler, A. Decomposition kinetics of materials combining biomass and electronic waste. J Therm Anal Calorim 128, 225–233 (2017). https://doi.org/10.1007/s10973-016-5900-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-016-5900-1

Keywords

Navigation