Skip to main content
Log in

Simultaneous adsorption at 25 °C and the peculiarities of gyrolite substituted with heavy metals

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The simultaneous adsorption kinetic parameters of synthetic gyrolite (200 °C, 48 h) for heavy metals ions (zinc, copper, manganese, nickel, iron and cobalt ions) as well as the influence of this compound on the hydration of ordinary Portland cement were studied. The examination revealed that the intercalation of heavy metal ions into the crystal structure of gyrolite proceeds intensively at the beginning of the process, because after 30 s the amount of adsorbed ions reaches 93 %. It was estimated that the reactions of simultaneous adsorption are not reversible, i.e., almost all heavy metal ions are chemisorbed by gyrolite. The experimental data were adequately described by pseudo-second Ho kinetic model: The largest adsorption rate constant is typical for iron ions (1.65 g min−1 mg−1), while the minimum value—for cobalt ions (0.45 g min−1 mg−1). It was found that gyrolite with impure heavy metal ions retained very good adsorption properties for the alkaline and alkaline earth ions by accelerating the early hydration of ordinary Portland cement samples. Meanwhile, at later stages of hydration, this compound affects as the usual pozzolanic additives because the amount of cumulative heat grew with the increasing amount of gyrolite in the samples: from 282 J g−1 in pure ordinary Portland cement samples to 301 J g−1 in samples with 15 % of gyrolite with impure heavy metal ions. It was determined that the additive of gyrolite with impure heavy metal ions do not have a significant effect on the properties of cement stone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Luzon M, Corrales T. Thermal studies and chromium removal efficiency of thermoresponsive hyperbranched copolymers based on PEG-methacrylates. J Therm Anal Calorim. 2014;116:401–9.

    Article  CAS  Google Scholar 

  2. Hosono T, Su C, Siringan F, Amano A, Onodera S. Effects of environmental regulations on heavy metal pollution decline in core sediments from Manila Bay. Mar Pollut Bull. 2010;60:780–5.

    Article  CAS  Google Scholar 

  3. Chen TR, Yu KF, Li S, Price GJ, Shi Q, Wei GJ. Heavy metal pollution recorded in Porites corals from Daya Bay, northern South China Sea. Mar Environ Res. 2010;70:318–26.

    Article  CAS  Google Scholar 

  4. Hashem FS, Amin MS. Kinetic and thermal studies of removal of CrO4 2− ions by ettringite. J Therm Anal Calorim. 2014;116:835–44.

    Article  CAS  Google Scholar 

  5. Liu CK, Bai RB, Ly QS. Selective removal of copper and lead ions by diethylenetriamine-functionalized adsorbent: behaviors and mechanisms. Water Res. 2008;42:1511–22.

    Article  CAS  Google Scholar 

  6. Parmar M, Thakur LS. Heavy Metal Cu, Ni and Zn: toxicity, health, health hazards and their removal techniques by low cost adsorbents: a short overview. Int J Plant Anim Environ Sci. 2013;3:143–57.

    CAS  Google Scholar 

  7. Khezami L, Capart R. Removal of chromium(VI) from aqueous solution by activated carbons: kinetic and equilibrium studies. J Hazard Mater. 2005;123:223–31.

    Article  CAS  Google Scholar 

  8. Nabi SA, Bushra R, Al-Othman ZA, Naushad M. Synthesis, characterization and analytical applications of a new composite cation exchange material acetonitrile stannic (IV) selenite: adsorption behavior of toxic metal ions in nonionic surfactant medium. Sep Sci Technol. 2011;46:847–57.

    Article  CAS  Google Scholar 

  9. Kadirvelu K, Thamaraiselvi K, Namasivayam C. Removal of heavy metals from industrial wastewaters by adsorption onto activeated carbon prepared from an agricultural solid waste. Bioresour Technol. 2001;76:63–5.

    Article  CAS  Google Scholar 

  10. Ahmaruzzaman M. Industrial wastes as low-cost potential adsorbents for the treatment of wastewater laden with heavy metals. Adv Colloid Interface. 2011;166:36–59.

    Article  CAS  Google Scholar 

  11. Renge VC, Khedkar SV, Pandey Shraddha V. Removal of heavy metals from wastewater using low cost adsorbents: a review. Sci Rev Chem Commun. 2012;2:580–4.

    CAS  Google Scholar 

  12. Wan Ngah WS, Hanafiah MAKM. Removal of heavy metal ions from wastewater by chemically modified plant wastes as adsorbents: a review. Bioresour Technol. 2008;99:3935–48.

    Article  CAS  Google Scholar 

  13. Gosh PK. Hexavalent chromium [Cr(VI)] removal by acid modified waste activated carbons. J Hazard Mater. 2009;171:116–22.

    Article  Google Scholar 

  14. Kobya M. Removal of Cr(VI) from aqueous solutions by adsorption onto hazelnut shell activated carbon: kinetic and equilibrium studies. Bioresour Technol. 2004;91:317–21.

    Article  CAS  Google Scholar 

  15. Lalvani SB, Wiltowski T, Hubner AH, Weston A, Mandich N. Removal of hexavalent chromium and metal cations by a selective and novel carbon adsorbent. Carbon. 1998;36:1219–26.

    Article  CAS  Google Scholar 

  16. Monster L, Adhoum N. Modified activated carbon for the removal of copper, zinc, chromium and cyanide from wastewater. Sep Purif Technol. 2002;26:137–46.

    Article  Google Scholar 

  17. Sulaymon AH, Abid BA, Al-Najar JA. Removal of lead copper chromium and cobalt ions onto granular activated carbon in batch and fixed-bed adsorbers. Chem Eng J. 2009;155:647–53.

    Article  CAS  Google Scholar 

  18. Sakkayawong N, Thiravetyan P, Nakbanpote W. Adsorption mechanism of synthetic reactive dye wastewater by chitosan. J Colloid Interface Sci. 2005;286:36–42.

    Article  CAS  Google Scholar 

  19. Ramesh A, Lee DJ, Wong JWC. Thermodynamic parameters for adsorption equilibrium of heavy metals and dyes from wastewater with low-cost adsorbents. J Colloid Interface Sci. 2005;291:588–92.

    Article  CAS  Google Scholar 

  20. Kurniawan TA, Chan GYS, Lo W, Babel S. Comparisons of low-cost adsorbents for treating wastewaters laden with heavy metals. Sci Total Environ. 2006;366:409–26.

    Article  CAS  Google Scholar 

  21. Site AD. Factors affecting sorption of organic compounds in natural sorbent/water systems and sorption coefficients for selected pollutants. A review. J Phys Chem Ref. 2001;30:187–439.

    Google Scholar 

  22. Brad HB. Adsorption of heavy metal ions on soils and soils constituents. J Colloid Interface Sci. 2004;277:1–18.

    Article  Google Scholar 

  23. Coleman NJ, Brassington DS, Raza A, Lee WE. Calcium silicate sorbent from secondary waste ash: heavy metals-removal from acidic solutions. Environ Technol. 2006;27:1089–99.

    Article  CAS  Google Scholar 

  24. Patnukao P, Kongsuwan A, Pavasant P. Batch studies of adsorption of copper and lead on activated carbon from Eucalyptus camaldulensis Dehn. Bark. J Environ Sci. 2008;20:1028–34.

    Article  CAS  Google Scholar 

  25. Imamoglu M, Tekir O. Removal of copper(II) and lead(II) ions from aqueous solutions by adsorption on activated carbon from a new precursor hazelnut husks. Desalination. 2008;228:108–13.

    Article  CAS  Google Scholar 

  26. Chaari I, Fakhfakh E, Chakroun S, Bouzid J, Boujelben N, FeKi M, Rocha F, Jamoussi F. Lead removal from aqueous solutions by a Tunisian smectitic clay. J Hazard Mater. 2008;156(1–3):545–55.

    Article  CAS  Google Scholar 

  27. Bhattacharyya KG, Sen Gupta S. Adsorption of Co(II) from aqueous medium on natural and acid activated kaolinite and montmorillonite. Sep Sci Technol. 2007;42:3391–418.

    Article  CAS  Google Scholar 

  28. Kalmykova Y, Stromvall AM, Steenari BM. Adsorption of Cd, Cu, Ni, Pb and Zn on Sphagnum peat from solutions with low metal concentrations. J Hazard Mater. 2008;152:885–91.

    Article  CAS  Google Scholar 

  29. Dinu MV, Dragan ES. Heavy metals adsorption on some iminodiacetate chelating resins as a function of the adsorption parameters. React Funct Polym. 2008;68:1346–54.

    Article  CAS  Google Scholar 

  30. Lin LC, Juang RS. Ion-exchange kinetics of Cu(II) and Zn(II) from aqueous solutions with two chelating resins. Chem Eng J. 2007;132:205–13.

    Article  CAS  Google Scholar 

  31. Wu J, Zhu YJ, Cao SW, Chen F. Hierachically nanostructured mesoporous spheres of calcium silicate hydrate: surfactant-free sonochemical synthesis and drug-delivery system with ultrahigh drug-loading capacity. Adv Mater. 2010;22:749–53.

    Article  CAS  Google Scholar 

  32. Wu J, Zhu YJ, Chen F. 45S5 Bioglass-derived glass-ceramic scaffolds for bone tissue engineering. Biomaterials. 2006;27:2414–25.

    Article  Google Scholar 

  33. Zhao J, Zhu YJ, Wu J, Zheng JQ, Zhao XY, Lu BQ, Chen F. Chitosan-coated mesoporous microspheres of calcium silicate hydrate: environmentally friendly synthesis and application as a highly efficient adsorbent for heavy metal ions. J Colloid Interface Sci. 2014;418:208–15.

    Article  CAS  Google Scholar 

  34. Komarneni S, Roy DM. Tobermorites: a new family of cation exchangers. Science. 1983;221:647–8.

    Article  CAS  Google Scholar 

  35. Yavuz Ö, Altunkaynak Y, Güzel F. Removal of copper, nickel, cobalt and manganese from aqueous solution by kaolinite. Water Res. 2003;37:948–52.

    Article  CAS  Google Scholar 

  36. Cvetkovic VS, Purenovic JM, Purenovic MM, Jovicevic JN. Interaction of Mg-enriched kaolinite–bentonite ceramics with arsenic aqueous solutions. Desalination. 2009;249:582–90.

    Article  CAS  Google Scholar 

  37. Hashem FS, Amin MS, Hekal EE. Stabilization of Cu (II) wastes by C3S hydrated matrix. Constr Build Mater. 2011;25:3278–82.

    Article  Google Scholar 

  38. Ylmén R, Jäglid U, Steenari BM, Panas I. Early hydration and setting of Portland cement monitored by IR, SEM and Vicat techniques. Cem Concr Res. 2009;39:433–9.

    Article  Google Scholar 

  39. Baltakys K, Iljina A, Bankauskaite A. Thermal properties and application of silica gel waste contaminated with F ions for C–S–H synthesis. J Therm Anal Calorim. 2015;121:145–54.

    Article  CAS  Google Scholar 

  40. Siauciunas R, Baltakys K, Gendvilas R, Eisinas A. The influence of Cd-impure gyrolite on the hydration of composite binder material based on α-C2S hydrate. J Therm Anal Calorim. 2014;118:857–63.

    Article  CAS  Google Scholar 

  41. Eisinas A, Baltakys K, Siauciunas R. Utilisation of gyrolite with impure Cd2+ ions in cement stone. Adv Cem Res. 2013;25:69–79.

    Article  CAS  Google Scholar 

  42. Kasperaviciute V, Baltakys K, Siauciunas R. The sorption properties of gyrolite for copper ions. Ceram Silik. 2008;52:95–101.

    CAS  Google Scholar 

  43. Iljina A, Baltakys K, Eisinas A. The effect of gyrolite structure properties on Zn2+ ion adsorption. Desalination Water Treat. 2016;57:1756–65.

    Article  CAS  Google Scholar 

  44. Abollinoa O, Acetob M, Malandrinoa M, Sarzaninia C, Mentastia E. Adsorption of heavy metals on Na-montmorillonite Effect of pH and organic substances. Water Res. 2003;37:1619–27.

    Article  Google Scholar 

  45. Gorce JP, Milestone NB. Probing the microstructure and water phases in composite cement blends. Cem Concr Res. 2007;37:310–8.

    Article  CAS  Google Scholar 

  46. Chen QY, Tyrer M, Hills CD, Yang XM, Carey P. Immobilisation of heavy metal in cement-based solidification/stabilisation: a review. Waste Manag. 2009;29:390–403.

    Article  CAS  Google Scholar 

  47. Taylor HFW. Cement chemistry. 2nd ed. Aberdeen: Thomas Telford; 1997.

    Book  Google Scholar 

  48. Merlino S. Gyrolite: its crystal structure and crystal chemistry. Mineral Mag. 1988;52:377–87.

    Article  CAS  Google Scholar 

  49. Lagergren S. About the theory of so-called adsorption of soluble substances. Kungliga Svenska Vetenskapsakademiens Handlingar. 1898;24:1–39.

    Google Scholar 

  50. Ho YS, Wase DAJ, Forster CF. The adsorption of divalent copper ions from aqueous solution by sphagnum moss peat. Trans IChem E B. 1994;17:185–94.

    Google Scholar 

  51. Ho YS, Wase DAJ, Forster CF. Batch nickel removal from aqueous solution by sphagnum moss peat. Water Resour. 1995;29:1327–32.

    CAS  Google Scholar 

  52. Bankauskaite A, Eisinas A, Baltakys K, Zadaviciute S. A study on the intercalation of heavy metal ions in a wastewater by synthetic layered inorganic adsorbents. Desalination Water Treat. 2015;56:1576–86.

    Article  CAS  Google Scholar 

  53. Baltakys K, Eisinas A, Barauskas I, Prichockiene E, Zaleckas E. Removal of Zn(II), CU(II) and Cd(II) from aqueous solution using gyrolite. J Sci Ind Res. 2012;71:566–72.

    CAS  Google Scholar 

Download references

Acknowledgements

This research was funded by a Grant (No. MIP-025/2014) from the Research Council of Lithuania.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Zadaviciute.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zadaviciute, S., Baltakys, K., Eisinas, A. et al. Simultaneous adsorption at 25 °C and the peculiarities of gyrolite substituted with heavy metals. J Therm Anal Calorim 127, 335–343 (2017). https://doi.org/10.1007/s10973-016-5856-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-016-5856-1

Keywords

Navigation