Skip to main content
Log in

The role of MgO in the thermal behavior of MgO–silica fume pastes

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The compounds of MgO–silica fume (SF) pastes constitute magnesium silicate hydrate (M–S–H) in a new generation of basic castables. However, Mg(OH)2 is a common reaction product with the formation of M–S–H. This study aims to reduce the formation of Mg(OH)2 in MgO–SF pastes. In this study, MgO powders were prepared by calcining magnesite at different temperatures and then mixed with SF and water to prepare MgO–SF pastes. The properties of MgO powders were characterized, and the pH values in the pore solutions of MgO–SF pastes were measured. The MgO–SF pastes cured for 90 days were calcined at 500, 700, 900 and 1200 °C, and the microstructure was characterized afterward. The results showed that both the reactivity of MgO powders and the pH value of the pore solution of MgO–SF pastes were diverse, which essentially depended on the grain sizes and the crystalline degree of MgO. Increasing the calcination temperature of MgO was beneficial to reduce the formation of Mg(OH)2 or even stop it when using MgO calcined at 1450 °C. Enstatite and forsterite formed for all MgO–SF pastes after calcination. However, the microstructure of MgO–SF paste with MgO calcined at 1450 °C was denser than others. MgO–SF pastes were suitable for the new-generation refractory castables. Notably, using MgO calcined at 1450 °C is more appropriate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Bowen NL, Tuttle OF. The system MgO–SiO2–H2O. Geol Soc Am Bull. 1949;60(3):439–60.

    Article  CAS  Google Scholar 

  2. Kudoh Y, Inoue T, Arashi H. Structure and crystal chemistry of hydrous wadsleyite, Mg1.75SiH0.5O4: possible hydrous magnesium silicate in the mantle transition zone. Phys Chem Miner. 1996;23(7):461–9.

    Article  CAS  Google Scholar 

  3. Nesterchuk NI, Makarova TA. The formation of aqueous magnesium silicate in the interaction of solutions of magnesium chloride and sodium metasilicate. Bull Acad Sci USSR Div Chem Sci. 1970;19(10):2053–5.

    Article  Google Scholar 

  4. Temuujin J, Okada K, MacKenzie KJD. Role of water in the mechanochemical reactions of MgO-SiO2 systems. J Solid State Chem. 1998;138(1):169–77.

    Article  CAS  Google Scholar 

  5. Temuujin J, Okada K, MacKenzie KJD. Formation of layered magnesium silicate during the aging of magnesium hydroxide–silica mixtures. J Am Ceram Soc. 1998;81(3):754–6.

    Article  CAS  Google Scholar 

  6. Dudkin BN, Vasyutin OA. Synthesis of magnesium silicate by heat treatment of sols and mechanical activation of solid components. Russ J Appl Chem. 2011;84(5):751–5.

    Article  CAS  Google Scholar 

  7. Yang JCS. The system magnesia-silica-water below 300°C.: I, low-temperature phases from 100° to 300°C. and their properties. J Am Ceram Soc. 1960;43(10):542–9.

    Article  CAS  Google Scholar 

  8. Wunder B, Schreyer W. Antigorite: high-pressure stability in the system MgO–SiO2–H2O (MSH). Lithos. 1997;41(1):213–27.

    Article  CAS  Google Scholar 

  9. Reynard B, Wunder B. High-pressure behaviour of synthetic antigorite in the MgO–SiO2–H2O system from Raman spectroscop. Am Mineral. 2006;91(2–3):459–62.

    Article  CAS  Google Scholar 

  10. Wei JX, Chen YM, Li YX. The reaction mechanism between MgO and microsilica at room temperature. J Wuhan Univ Technol. 2006;21(2):88–91.

    Article  CAS  Google Scholar 

  11. Yu Q, Zhang W, Zhang H. Reaction products of MgO and microsilica cementitious materials at different temperatures. J Wuhan Univ Technol. 2011;26(4):745–8.

    Article  Google Scholar 

  12. Li Z, Zhang T, Hu J, et al. Characterization of reaction products and reaction process of MgO–SiO2–H2O system at room temperature. Constr Build Mater. 2014;61:252–9.

    Article  Google Scholar 

  13. Zhang T, Cheeseman CR, Vandeperre LJ. Development of low pH cement systems forming magnesium silicate hydrate (MSH). Cem Concr Res. 2011;41(4):439–42.

    Article  CAS  Google Scholar 

  14. Zhang T, Vandeperre LJ, Cheeseman CR. Formation of magnesium silicate hydrate (MSH) cement pastes using sodium hexametaphosphate. Cem Concr Res. 2014;65:8–14.

    Article  CAS  Google Scholar 

  15. Jin F, Al-Tabbaa A. Thermogravimetric study on the hydration of reactive magnesia and silica mixture at room temperature. Thermochim Acta. 2013;566:162–8.

    Article  CAS  Google Scholar 

  16. Jin F, Al-Tabbaa A. Strength and hydration products of reactive MgO–silica pastes. Cem Concr Compos. 2014;52:27–33.

    Article  CAS  Google Scholar 

  17. Szczerba J, Prorok R, Śnieżek E, et al. Influence of time and temperature on ageing and phases synthesis in the MgO–SiO2–H2O system. Thermochim Acta. 2013;567:57–64.

    Article  CAS  Google Scholar 

  18. Kaljuvee T, Trikkel A, Kuusik R, et al. The role of MgO in the binding of SO2 by lime-containing materials. J Therm Anal Calorim. 2005;80(3):591–7.

    Article  CAS  Google Scholar 

  19. Fajnor VŠ, Gerthofferová H, Kuchta Ľ, et al. High-temperature phases of montmorillonite synthetized from the oxides SiO2–Al2O3–MgO–CaO. J Therm Anal Calorim. 1982;24(1):51–7.

    Article  CAS  Google Scholar 

  20. Braulio MAL, Brant POC, Bittencourt LRM, et al. Microsilica or MgO grain size: which one mostly affects the in situ spinel refractory castable expansion? Ceram Int. 2009;35(8):3327–34.

    Article  CAS  Google Scholar 

  21. Esteban-Cubillo A, Pina-Zapardiel R, Moya JS, et al. The role of magnesium on the stability of crystalline sepiolite structure. J Eur Ceram Soc. 2008;28(9):1763–8.

    Article  CAS  Google Scholar 

  22. Braulio MAL, Bittencourt LRM, Pandolfelli VC. Magnesia grain size effect on in situ spinel refractory castables. J Eur Ceram Soc. 2008;28(15):2845–52.

    Article  CAS  Google Scholar 

  23. Mikhail SA, King PE. High-temperature thermal analysis study of the reaction between magnesium oxide and silica. J Therm Anal Calorim. 1993;40(1):79–84.

    Article  CAS  Google Scholar 

  24. Walling SA, Kinoshita H, Bernal SA, et al. Structure and properties of binder gels formed in the system Mg(OH)2–SiO2–H2O for immobilisation of Magnox sludge. Dalton Trans. 2015;44(17):8126–37.

    Article  CAS  Google Scholar 

  25. Aphane M, van der Merwe E, Strydom C. Influence of hydration time on the hydration of MgO in water and in a magnesium acetate solution. J Therm Anal Calorim. 2009;96(3):987–92.

    Article  CAS  Google Scholar 

  26. Ma H, Xu B, Liu J, et al. Effects of water content, magnesia-to-phosphate molar ratio and age on pore structure, strength and permeability of magnesium potassium phosphate cement paste. Mater Des. 2014;64:497–502.

    Article  CAS  Google Scholar 

  27. Barneyback RS, Diamond S. Expression and analysis of pore fluids from hardened cement pastes and mortars. Cem Concr Res. 1981;11(2):279–85.

    Article  CAS  Google Scholar 

  28. Zhang T, Gong C, Zhang P, et al. Effect of simulative pore solution on the hydration kinetics of GGBFS. Adv Cem Res. 2012;24(5):283.

    Article  Google Scholar 

  29. Gallé C. Effect of drying on cement-based materials pore structure as identified by mercury intrusion porosimetry: a comparative study between oven-, vacuum-, and freeze-drying. Cem Concr Res. 2001;31(10):1467–77.

    Article  Google Scholar 

  30. Brew DRM, Glasser FP. Synthesis and characterisation of magnesium silicate hydrate gels. Cem Concr Res. 2005;35(1):85–98.

    Article  CAS  Google Scholar 

  31. Burton AW, Ong K, Rea T, et al. On the estimation of average crystallite size of zeolites from the Scherrer equation: a critical evaluation of its application to zeolites with one-dimensional pore systems. Microporous Mesoporous Mater. 2009;117(1):75–90.

    Article  CAS  Google Scholar 

  32. Walenta G, Füllmann T. Advances in quantitative XRD analysis for clinker, cements, and cementitious additions. Powder Diffr. 2004;19(01):40–4.

    Article  CAS  Google Scholar 

  33. Iler RK. The chemistry of silica: solubility, polymerization, colloid and surface properties, and biochemistry. Hoboken: Wiley; 1979.

    Google Scholar 

  34. Singer A, Stahr K, Zarei M. Characteristics and origin of sepiolite (Meerschaum) from Central Somalia. Clay Miner. 1998;33(2):349–62.

    Article  CAS  Google Scholar 

  35. Béarat H, McKelvy MJ, Chizmeshya AVG, et al. Magnesium hydroxide dehydroxylation/carbonation reaction processes: implications for carbon dioxide mineral sequestration. J Am Ceram Soc. 2002;85(4):742–8.

    Article  Google Scholar 

  36. Partyka J, Gasek K, Pasiut K, et al. Effect of addition of BaO on sintering of glass-ceramic materials from SiO2–Al2O2–Na2O–K2O–CaO/MgO system. J Therm Anal Calorim. 2016;125(3):1095–103. doi:10.1007/s10973-016-5462-2.

    Article  CAS  Google Scholar 

  37. Yürüyen S, Toplan N, Yildiz K, et al. The non-isothermal kinetics of cordierite formation in mechanically activated talc–kaolinite–alumina ceramics system. J Therm Anal Calorim. 2016;125(2):803–8. doi:10.1007/s10973-016-5277-1.

    Article  Google Scholar 

  38. Andreola F, Barbieri L, Lancellotti I, et al. Thermal approach to evaluate the sintering-crystallization ability in a nepheline-forsterite-based glass-ceramics. J Therm Anal Calorim. 2016;123(1):241–8.

    Article  CAS  Google Scholar 

  39. Fernández J, González F, Pesquera C, et al. Qualitative and quantitative characterization of a coal power plant waste by TG/DSC/MS, XRF and XRD. J Therm Anal Calorim. 2016;125(2):703–10. doi:10.1007/s10973-016-5270-8.

    Article  Google Scholar 

Download references

Acknowledgements

This work was funded by the China Postdoctoral Science Foundation (No. 2016M590776), National High Technology Research and Development Program (“863 Program”, No. 2015AA034701), Science and Technology Planning Project of Guangdong (No. 2013A011401008) and Natural Science Foundation of China (No. 51172075). Their financial supports are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiangxiong Wei.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Z., Yu, Q., Chen, X. et al. The role of MgO in the thermal behavior of MgO–silica fume pastes. J Therm Anal Calorim 127, 1897–1909 (2017). https://doi.org/10.1007/s10973-016-5827-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-016-5827-6

Keywords

Navigation