Skip to main content
Log in

Thermodynamic stability of AlSi11 alloy microconstituents

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Aluminium alloys possess excellent mechanical, physically chemical and technological properties which have found an extensive application in the automotive industry. Alloy AlSi11 belongs to a group of eutectic alloys characterized by high fluidity, low pouring temperature and narrow solidification interval which comprehend to the uniformly distributed eutectic microstructure indicating superior mechanical and technological properties. Study of AlSi11 alloy solidification sequence has been accompanied by calculation of equilibrium phase diagram, and simultaneous thermal analysis, all in correlation with microstructure development. Thermodynamic calculation revealed solidification sequence with corresponding temperatures in equilibrium state. Differential scanning calorimetry enables determination of exact temperatures of phases’ transformations correlated at different cooling rates. Dilatometer thermal analysis defined dimensional changes of AlSi11 alloy. Microstructural examination revealed development of following constituents: primary aluminium (αAl), high-temperature intermetallic phases on the iron base (Al5FeSi and/or Al15(Fe,Mn)3Si2), binary eutectic (αAl + βSi) and secondary eutectic (Mg2Si and Al5Mg8FeSi6) as a last solidifying phases. Synergy of performed phase diagram calculation, thermodynamic and microstructural investigation enables determination of thermodynamic stability of AlSi11 alloy exposed to different cooling conditions, with respect to phase’s evolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. EN 1706:2010 Aluminium and aluminium alloys—castings—chemical composition and mechanical properties.

  2. ASM Specialty Handbook. Aluminum and aluminum alloys. Materials Park: ASM International; 1993.

    Google Scholar 

  3. Dispinar D, Campbell J. Metal quality studies in secondary remelting of aluminium. J Inst Cast Met Eng. 2004;178:78–86.

    Google Scholar 

  4. Raghavan V. Al-Fe-Mn-Si (Aluminum-Iron-Manganese-Silicon). J Phase Equilib Diffus. 2007;28:215–7.

    Article  CAS  Google Scholar 

  5. Tillová E, Chalupová M, Hurtalová L. Evolution of phases in a recycled Al–Si Cast alloy during solution treatment. In: Kazmiruk V, editor. Scanning Electron Microscopy. InTech; 2012. doi:10.5772/34542.

  6. Tański T, Labisz K, Krupińska B, Krupiński M, Król M, Maniara R, Borek W. Analysis of crystallization kinetics of cast aluminum–silicon alloy. J Therm Anal Calorim. 2016;123:63–74.

    Article  Google Scholar 

  7. Iqbal N, van Dijk NH, Offerman SE, Geerlofs N, Moret MP, Katgerman L, Kearley GJ. In situ investigation of the crystallization kinetics and the mechanism of grain refinement in aluminum alloys. Mater Sci Eng A Struct. 2006;416(1–2):18–32.

    Article  Google Scholar 

  8. Krone K. Aluminium recycling. Düsseldorf: Vereinigung Deutscher Schemlzhütten; 2000.

    Google Scholar 

  9. ASM Specialty Handbook. Alloy phase diagrams. Materials Park: ASM International; 1992.

    Google Scholar 

  10. Bäckerund L, Chai G, Tamminen J. Solidification Characteristics of Aluminium Alloys: Foundry Alloys, vol. 2. Stockhlom: AFS/Skanaluminium; 1999.

    Google Scholar 

  11. Dedavid BA, Costa EM, Ferreira CRF. A study of precipitates formation in a 380.0 aluminum alloys modified by the addition of magnesium. J Therm Anal Calorim. 2002;67:473–80.

    Article  CAS  Google Scholar 

  12. Darlapudi A, McDonald SD, Terzi S, Prasad A, Felberbaum M, StJohn DH. The influence of ternary alloying elements on the Al–Si eutectic microstructure and the Si morphology. J Cryst Growth. 2016;433:63–73.

    Article  CAS  Google Scholar 

  13. Li D, Cui C, Wang X, Wang Q, Chen C, Liu S. Microstructure evolution and enhanced mechanical properties of eutectic Al–Si die cast alloy by combined alloying Mg and La. Mater Des. 2016;90:820–8.

    CAS  Google Scholar 

  14. Darlapudi A, McDonald SD, StJohn DH. The influence of ternary Cu additions on the nucleation of eutectic grains in a hypoeutectic Al-10 wt%Si alloy. J Alloys Compd. 2015;646:699–705.

    Article  CAS  Google Scholar 

  15. Zovko Brodarac Z, Dolić N, Unkić F. Influence of copper content on microstructure development of AlSi9Cu3 alloy. J Min Metall Sect B Metall. B 2014;50:53–60.

    Article  Google Scholar 

  16. Timpel M, Wanderka N, Grothausmann R, Banhart J. Distribution of Fe-rich phases in eutectic grains of Sr-modified Al–10 wt% Si–0.1 wt% Fe casting alloy. J Alloy Compd. 2013;558:18–25.

    Article  CAS  Google Scholar 

  17. Timelli G, Capuzzi S, Fabrizi A. Precipitation of primary Fe-rich compounds in secondary AlSi9Cu3(Fe) alloys. J Therm Anal Calorim. 2016;123:249–62.

    Article  CAS  Google Scholar 

  18. Balanović L, Živković D, Manasijević D, Minić D, Marjanović B. Calorimetric study and thermal analysis of Al-Sn system. J Therm Anal Calorim. 2013;111:1431–5.

    Article  Google Scholar 

  19. Stanojević Šimšić Z, Manasijević D, Živković D, Holjevac Grgurić T, Kostov A, Minić D, Živković Z. Experimental investigation and characterization of selected as-cast alloys in vertical Cu0.5Ag0.5–Al section in ternary Cu–Al–Ag system. J Therm Anal Calorim. 2015;120:149–55.

    Article  Google Scholar 

  20. Balanović L, Živković D, Manasijević D, Minić D, Ćosović V, Talijan N. Calorimetric investigation of Al–Zn alloys using Oelsen method. J Therm Anal Calorim. 2014;118:1287–92.

    Article  Google Scholar 

  21. Premović M, Minić D, Ćosović V, Manasijević D, Živković D, Kostov A, Talijan N. Experimental investigation and thermodynamic calculations of the Al–Cu–Sb phase diagram. J Alloy Compd. 2013;555:347–56.

    Article  Google Scholar 

  22. Gomidželović L, Požega E, Kostov A, Vuković N, Krstić V, Živković D, Balanović Lj. Thermodynamics and characterization of shape memory Cu–Al–Zn alloys. Trans Nonferrous Met Soc China. 2015;25:2630–6.

    Article  Google Scholar 

  23. Djurdjevic MB, Huber G, Odanovic Z. Synergy between thermal analysis and simulation. J Therm Anal Calorim. 2013;111:1365–73.

    Article  CAS  Google Scholar 

  24. Mahfoud M, Prasada Rao AK, Emadi D. The role of thermal analysis in detecting impurity levels during aluminum recycling. J Therm Anal Calorim. 2010;100:847–51.

    Article  CAS  Google Scholar 

  25. Zovko Brodarac Z, Unkić F, Medved J, Mrvar P. Determination of solidification sequence of the AlMg9 alloy. Kov Mater. 2012;50:59–67.

    Google Scholar 

  26. Du Y, Chang YA, Huang B, Gong W, Jin Z, Xu H, Yuan Z, Liu Y, He Y, Xie F-Y. Diffusion coefficients of some solutes in fcc and liquid Al: critical evaluation and correlation. Mater Sci Eng. 2003;A363:140–51.

    Article  CAS  Google Scholar 

  27. Stefanescu DM. Science and engineering of casting solidification. 3rd ed. New York: Springer; 2015.

    Book  Google Scholar 

Download references

Acknowledgements

Company Jajce Alloy Wheels Ltd for samples and University of Rijeka Department of physics for help are greatly acknowledged. Investigation was done in the frame of financial support of investigation of University of Zagreb, Croatia (TP167).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zdenka Zovko Brodarac.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zovko Brodarac, Z., Holjevac Grgurić, T. & Burja, J. Thermodynamic stability of AlSi11 alloy microconstituents. J Therm Anal Calorim 127, 431–438 (2017). https://doi.org/10.1007/s10973-016-5746-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-016-5746-6

Keywords

Navigation