Skip to main content
Log in

Low-temperature molar heat capacities, thermodynamic properties and crystal structure of Cu(C3N2H4)4(ClO4)2

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

A complex of copper perchlorate coordinated with imidazole Cu(C3N2H4)4(ClO4)2 was synthesized and characterized by X-ray single-crystal diffraction. The complex is centrosymmetric in the monoclinic P2(1)/c space group. The low-temperature molar heat capacities and thermodynamic properties of the complex were studied with adiabatic calorimetry (AC). The thermodynamic functions [H TH 298.15] and [S TS 298.15] were derived in the temperature range from 80 to 370 K with temperature interval of 5 K. Thermal decomposition behavior of the complex in nitrogen atmosphere was studied by thermogravimetric (TG) analysis and differential scanning calorimetry (DSC). The mechanism of the decomposition was deduced to be the breaking up the two Cl–O bonds of the Cl–O–Cu and the Cu–N bonds of the imidazole rings in succession.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Köhler J, Meyer J. Explosivstoffe. DWeinheim: Wiley-VCH; 1998.

    Book  Google Scholar 

  2. Perrone D, Monteiro M, Castelo-Branco VN. Imidazole dipeptides: chemistry, analysis, function and effects. London: Royal Society; 2015.

    Google Scholar 

  3. Karaghiosoff K, Klapötke TM, Michailovski AN, Nöth H, Suter M, Holl G. 1,4-diformyl-2,3,5,6-tetranitratopiperazine: a new primary explosive based on glyoxal, propellants. Explos Pyrotech. 2003;28:1–6.

    Article  CAS  Google Scholar 

  4. Singh RP, Verma RD, Meshri DT, Shreeve JM. Energetic nitrogen-rich salts and ionic liquids. Angew Chem Int Ed. 2006;45:3584–601.

    Article  CAS  Google Scholar 

  5. Klapötke TM. High energy density materials. Berlin: Springer; 2007.

    Book  Google Scholar 

  6. Chapman RD, Klapöke TM. In high energy density materials. Berlin: Springer; 2007.

    Google Scholar 

  7. Steinhauser G, Tarantik K, Klapötke TM. Copper in pyrotechnics. J Pyrotech. 2008;27:3–13.

    CAS  Google Scholar 

  8. Tappan BC, Huynh MH, Hiskey MA, Chavez DE, Luther EP, Mang JT, Son SF. Ultralow-density nanostructured metal foams: combustion synthesis, morphology, and composition. J Am Chem Soc. 2006;128:6589–94.

    Article  CAS  Google Scholar 

  9. Yang Q, Chen SP, Xie G, Gao SL. Synthesis and characterization of an energetic compound Cu(Mtta)2(NO3)2 and effect on thermal decomposition of ammonium perchlorate. J Hazard Mater. 2011;197:199–203.

    Article  CAS  Google Scholar 

  10. Wu BD, Wang SW, Yang L, Zhang TL, Zhou ZN, Yu KB. Preparation, crystal structures, thermal decomposition and explosive properties of two novel energetic compounds M(IMI)4(N3)2 (M = CuII and Ni II, IMI = imidazole): the new high-nitrogen materials (N > 46%). Eur J Inorg Chem. 2011;2011:2616–23.

    Article  Google Scholar 

  11. Gao FL. Master’s thesis. Beijing Institute of Technology: Beijing; 2009.

    Google Scholar 

  12. Fan Q T. Master’s thesis. Beijing Institute of Technology: Beijing, 2008.

  13. Choi YA, Keem JO, Kim CY, Yoon HR, Heo WD, Chung BH, Jung YW. A novel copper-chelating strategy for fluorescent proteins to image dynamic copper fluctuations on live cell surfaces. Chem Sci. 2015;6:1301–6.

    Article  CAS  Google Scholar 

  14. Dede B, Karipcin F, Cengiz M. Novel homo-and hetero-nuclear copper (II) complexes of tetradentate schiff bases: synthesis, characterization, solvent-extraction and catalase-like activity studies. J Hazard Mater. 2009;163:1148–56.

    Article  CAS  Google Scholar 

  15. William MA, Sarah CL. DFT calculations of the EPR parameters for Cu(II) DETA imidazole complexes. Phys Chem Chem Phys. 2009;11:8266–74.

    Article  Google Scholar 

  16. Lakatos A, Béla G, Nóra VN, Zita C, Wéber E, Lívia F, Tamás K. Histidine-rich branched peptides as Cu(II) and Zn(II) chelators with potentialtherapeutic application in Alzheimer’s disease. Dalton Trans. 2012;41:1713–26.

    Article  CAS  Google Scholar 

  17. Remelli M, Valensin D, Bacco D, Gralka E, Guerrini R, Migliorini C, Kozlowskic H. The complex-formation behaviour of hisresidues in the fifth Cu2+ binding site of human prion protein: a close look. New J Chem. 2009;33:2300–10.

    Article  CAS  Google Scholar 

  18. Jorge AT, Luis RS, Mariona S. Computational calculations of pK a values of imidazole in Cu(II)complexes of biological relevance. Phys Chem Chem Phys. 2011;13:7852–61.

    Article  Google Scholar 

  19. Potocki S, Valensinb D, Kozlowski H. The specificity of interaction of Zn2+, Ni2+ and Cu2+ ions with the histidine-rich domain of the TjZNT1 ZIP family transporter. Dalton Trans. 2014;43:10215–23.

    Article  CAS  Google Scholar 

  20. Gralka E, Valensin D, Porciatti E, Gajda C, Gaggelli E, Valensin G, Kamysz W, Nadolny R, Guerrini R, Bacco D, Remelli M, Kozlowski H. CuII binding sites located at His-96 and His-111 of the human prion protein: thermodynamic and spectroscopic studies on model peptides. Dalton Trans. 2008;37:5207–19.

    Article  Google Scholar 

  21. Subramanian PS, Suresh E, Dastidar P. Model for type 2 Cu (II) oxidase: structure reactivity correlation studies on some mononuclear Cu(X–Salmeen) Im complexes, where X = H, Cl and Im = Imidazole: molecular association, electronic spectra and ascorbic oxidation. Polyhedron. 2004;23:2515–22.

    Article  CAS  Google Scholar 

  22. Patel RN, Gundal VLN, Patel DK. Synthysis, structure and properties of some copper(II) complexes containing an ONO donor Schiff base and substituted imidazole ligands. Polyhedron. 2008;27:1054–60.

    Article  CAS  Google Scholar 

  23. Jia L, Jiang P, Xu J, Hao ZY, Xu XM, Chen LH, Wu JC, Tang N, Wang Q, Vittal JJ. Synthesis, crystal structures, DNA-binding properties, cytotoxic and antioxidation activities of several new ternary copper (II) complexes of N, N′-(p-xylylene)di-alanine acid and 1,10-phenanthroline. Inorg Chim Acta. 2010;363:855–65.

    Article  CAS  Google Scholar 

  24. Pogozelski WK, Tullius TDO. Oxidative strand scission of nucleic acids: routes initiated by hydrogen abstraction from the sugar moiety. Chem Rev. 1998;98:1089–108.

    Article  CAS  Google Scholar 

  25. Pati SA, Naik VH, Kulkarni AD, Kamble U, Bagihalli GB, Badami PS. DNA cleavage, in vitro antimicrobial and electrochemical studies of Co(II), Ni(II), and Cu(II) complexes withm-substituted thiosemicarbazide Schiff bases. J Coord Chem. 2010;63:688–99.

    Article  Google Scholar 

  26. Lv XC, Liu BP, Tan ZC, Zhang ZH, Shi Q, Sun XL. Molar heat capacity and thermodynamic properties of [Er(Pro)2(H2O)5Cl2] crystalline. J Chem Eng Data. 2006;51:1526–9.

    Article  CAS  Google Scholar 

  27. Lv XC, Tan ZC, Gao XH. Molar heat capacities, thermodynamic properties and thermal stability of (C2H5O2 N)2Cl3·3H2O. J Chem Eng Data. 2011;56:1383–7.

    Article  CAS  Google Scholar 

  28. Yao JC, Yao FJ, Li YC, Wang JG. Refinement of the crystal structure of tetra(imidazole) copper(II) diperchlorate, Cu(C3N2H4)4(ClO4)2. New Cryst Struc. 2007;222:211–2.

    CAS  Google Scholar 

  29. Wang J, Liu XR, Sun YJ, Yan LY, He SY. Synthesis, crystal structures, thermal properties, and DNA-binding studies of transition metal complexes with imidazole ligands. J Coord Chem. 2011;64:1554–65.

    Article  CAS  Google Scholar 

  30. Li ZM, Zhou ZN, Zhang TL, Tang Z, Yang L, Zhang JG. Energetic transition metal (Co/Cu/Zn)imidazole perchlorate complexes: synthesis, structural characterization, thermal ehavior and non-isothermal kinetic analyses. Polyhedron. 2012;44:59–65.

    Article  Google Scholar 

  31. Sheldrick GM. SHELXS-97; Program for the solution of crystal structure. Göttingen: University of Göttingen; 1997.

    Google Scholar 

  32. Sheldrick GM. A short history of SHELX. Acta Crystallogr Sect A. 2008;64:112–22.

    Article  CAS  Google Scholar 

  33. Wang MH, Tan ZC, Sun XH, Zhang HT, Liu BP, Sun LX, Zhang T. Determination of heat capacities and thermodynamic properties of 2-(chloromethylthio) benzothiazole by an adiabatic calorimeter. J Chem Eng Data. 2005;50:270–3.

    Article  CAS  Google Scholar 

  34. Tan ZC, Shi Q, Liu BP, Zhang HT. A fully automated adiabatic calorimeter for heat capacity measurement between 80 and 400 K. J Therm Anal Calorim. 2008;92:367–74.

    Article  CAS  Google Scholar 

  35. Lv XC, Tan ZC, Shi Q, Zhang HT, Sun XL. Molar heat capacity and thermodynamic properties of 4-Methyl-4-cyclohexene-1, 2-dicarboxylic. J Chem Eng Data. 2005;50:932–5.

    Article  Google Scholar 

  36. Tan ZC, Sun GY, Yin AX, Wang WB, Ye JC, Zhou LX. An adiabatic low-temperature calorimeter for heat capacity measurement of small samples. J Therm Anal. 1995;45:59–67.

    Article  CAS  Google Scholar 

  37. Donald GA. Thermodynamic properties of synthetic sapphire standard reference material 720 and the effect of temperature-scale difference on thermodynamic properties. J Phys Chem Ref Data. 1993;22:1441–52.

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Nature Science Foundation of China under the Grant NSFC NO. 21103078, 21003069.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xue-Chuan Lv.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (CIF 13 kb)

Supplementary material 2 (PDF 215 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pan, L., Lv, XC., Gao, XH. et al. Low-temperature molar heat capacities, thermodynamic properties and crystal structure of Cu(C3N2H4)4(ClO4)2 . J Therm Anal Calorim 131, 15–23 (2018). https://doi.org/10.1007/s10973-016-5697-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-016-5697-y

Keywords

Navigation