Skip to main content
Log in

Thermal behavior of saturated phthalic-type polyesters. Influence of the branching polyol

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The influence of the branching polyol on the thermal behavior of phthalic anhydride (PA)–polyol polyesters was determined under non-isothermal conditions. The polyol was glycerol, trimethylolpropane, and pentaerythritol, used in a molar ratio of 1.5:1, 1.5:1, and 2:1 in respect of anhydride, respectively. The thermal behavior of the synthesized polyesters was qualitatively estimated by the thermoanalytical curves obtained at a heating rate of 10 °C min−1. Quantitatively, the thermal behavior of the prepared polyesters was studied by a kinetic analysis using three different methods: Friedman, Flynn–Wall–Ozawa, and modified nonparametric kinetic method. By all the samples, two thermodegradation steps were observed. The beginning of the first step of degradation was considered the qualitative criterion for the thermal stability estimation: The pentaerythritol-containing polyester was the most thermostable, until 195 °C. Also the kinetic analysis the same sample presented the highest activation energy, i.e., the lowest thermodegradation rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Zhang T, Howell BA, Smith PB, Smith PS. Thermal degradation of glycerol/adipic acid hyperbranched poly(ester)s containing either hydroxyl or carboxyl end-groups. J Therm Anal Calorim. 2015;122:1221–9.

    Article  CAS  Google Scholar 

  2. Howel BA. The utility of variable temperature techniques in the determination of kinetic parameters. Thermochim Acta. 2002;388:275–81.

    Article  Google Scholar 

  3. Zhang P, et al. Thermal stability of aromatic polyesters prepared from di-phenolic acid and its esters. Polym Degrad Stab. 2009;94(8):1261–6.

    Article  CAS  Google Scholar 

  4. Hansen D, et al. Synthesis and characterization of polyesters derived from glycerol and phthalic acid. Mater Res. 2007;10(3):257–60.

    Article  Google Scholar 

  5. Zhang T, Howell BA, Dumitrascu A, Martin SJ. Synthesis and characterization of glycerol—adipic acid hyperbranched polyesters. Polymers. 2014;55:5062–72.

    Google Scholar 

  6. Bolcu C, Modra D, Vlase G, Doca N, Mihali C, Vlase T. Synthesis and thermal behaviour of some diisocyanate-silane compounds. J Therm Anal Calorim. 2014;115(1):489–94.

    Article  CAS  Google Scholar 

  7. Bolcu C, Vlase G, Vlase T, Albu P, Doca N, Şisu E. Thermal behavior of some polyurethanes reticulated by aminated maltose. J Therm Anal Calorim. 2013;113(3):1409–14.

    Article  CAS  Google Scholar 

  8. Vlase T, Bolcu C, Vlase G, Mogos A, Doca N. Thermooxidative stabilization of a MDI polyol polyisocyanate. J Therm Anal Calorim. 2010;99:973–9.

    Article  CAS  Google Scholar 

  9. Albu P, Bolcu C, Vlase G, Doca N, Vlase T. Kinetics of degradation under non-isothermal conditions of a thermooxidative stabilized polyurethane. J Therm Anal Calorim. 2011;105(2):685–9.

    Article  CAS  Google Scholar 

  10. Vlase T, Vlase G, Doca N, Iliescu S, Ilia G. Thermo-oxidative degradation of polymers containing phosphorus in the main chain. High Perform Polym. 2010;22(7):863–75.

    Article  CAS  Google Scholar 

  11. Vlase T, Doca N, Vlase G, Bolcu C, Borcan F. Kinetics of non-isothermal decomposition of three IRGANOX-type antioxidants. J Therm Anal Calorim. 2008;92:15–8.

    Article  CAS  Google Scholar 

  12. Albu P, Bolcu C, Vlase G, Doca N, Vlase T. Kinetics of degradation under nonisothermal conditions of a thermooxidative stabilized polyurethane. J Therm Anal Calorim. 2011;105:685–9.

    Article  CAS  Google Scholar 

  13. Friedman HL. Kinetics of thermal degradation of char-foaming plastics from thermogravimetry: application to a phenolic resin. J Polym Sci. 1965;6C:183–95.

    Google Scholar 

  14. Flynn JH, Wall LA. A quick, direct method for the determination of activation energy from thermogravimetric data. Polym Lett. 1966;4:323–8.

    Article  CAS  Google Scholar 

  15. Ozawa T. A new method of analyzing thermogravimetric data. Bull Chem Soc Jpn. 1965;38:1881–6.

    Article  CAS  Google Scholar 

  16. Birta N, Doca N, Vlase G, Vlase T. Kinetic of sorbitol decomposition under non-isothermal conditions. J Therm Anal Calorim. 2008;92:35–638.

    Article  Google Scholar 

  17. Anghel M, Vlase G, Bilanin M, Vlase T, Albu P, Fuliaş A, Tolan I, Doca N. Comparative study on the thermal behavior of two similar triterpenes from birch. J Therm Anal Calorim. 2013;113(3):1379–85.

    Article  CAS  Google Scholar 

  18. Fuliaş A, Vlase G, Vlase T, Soica C, Heghes A, Craina M, Ledeti I. Comparative kinetic analysis on thermal degradation of some cephalosporins using TG and DSC data. Chem Centr J. 2013;7(1):70.

    Article  Google Scholar 

  19. Fulias A, Vlase G, Grigorie C, Ledeţi I, Albu P, Bilanin M, Vlase T. Thermal behaviour studies of procaine and benzocaine: Part 1. Kinetic analysis of the active substances under non-isothermal conditions. J Therm Anal Calorim. 2013;113(1):265–71.

    Article  CAS  Google Scholar 

  20. Ledeti I, Vlase G, Vlase T, Bercean V, Fulias A. Kinetic of solid state degradation of transitional coordinative compounds containing functionalized 1,2,4-triazolic ligand. J Therm Anal Calorim. 2015;121(3):1049–57.

    Article  CAS  Google Scholar 

  21. Patrutescu C, Vlase G, Turcus V, Ardelean D, Vlase T, Albu P. TG/DTG/DTA data used for determining the kinetic parameters of the thermal degradation process of an immunosuppressive agent: mycophenolate mofetil. J Therm Anal Calorim. 2015;121(3):983–8.

    Article  CAS  Google Scholar 

  22. Ledeti I, Fulias A, Vlase G, Vlase T, Doca N. Novel triazolic copper(II) complex: synthesis, thermal behaviour and kinetic study. Rev Roum Chim. 2013;58(4–5):441–50.

    CAS  Google Scholar 

  23. Ledeti I, Vlase G, Vlase T, Doca N, Bercean V, Fulias A. Thermal decomposition, kinetic study and evolved gas analysis of 1,3,5-triazine-2,4,6-triamine. J Therm Anal Calorim. 2014;118(2):1057–63.

    Article  CAS  Google Scholar 

  24. Fulias A, Vlase G, Vlase T, Onetiu D, Doca N, Ledeti I. Thermal degradation of B-group vitamins: B-1, B-2 and B-6. J Therm Anal Calorim. 2014;118(2):1033–8.

    Article  CAS  Google Scholar 

  25. Wall ME. Singular value decomposition and principal component analysis. In: Berrar DP, Dubitzky W, Granzow M, editors. A practical approach to microarray data analysis, vol. 9. Norwel, MA: Kluwer; 2003. p. 91–109 LANL LA-UR-02.

    Chapter  Google Scholar 

  26. Šesták J, Berggren G. Study of the kinetics of the mechanism of solid-state reactions at increasing temperatures. Thermochim Acta. 1971;3:1–12.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by POSCCE Grant No. 12PO102418/5124/22.05.2014, SMIS 50328: “New energetic efficient technology for synthesis of polyester copolymers.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Titus Vlase.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vlase, G., Modra, D., Albu, P. et al. Thermal behavior of saturated phthalic-type polyesters. Influence of the branching polyol. J Therm Anal Calorim 127, 409–414 (2017). https://doi.org/10.1007/s10973-016-5667-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-016-5667-4

Keywords

Navigation