Skip to main content
Log in

Solid-state synthesis of undoped and Sr-doped K0.5Na0.5NbO3

Study by thermal analysis and in situ high-temperature X-ray diffraction

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The solid-state synthesis of undoped K0.5Na0.5NbO3 (KNN) and KNN doped with 1, 2 and 6 mol% Sr, from potassium, sodium and strontium carbonates with niobium pentoxide, was studied using thermal analysis and in situ high-temperature X-ray diffraction (HT-XRD). The thermogravimetry and the differential thermal analyses with evolved-gas analyses showed that the carbonates, which were previously reacted with the moisture in the air to form hydrogen carbonates, partly decomposed when heated to 200 °C. In the temperature interval where the reaction was observed, i.e., between 200 and 750 °C, all the samples exhibited the main mass loss in two steps. The first step starts at around 400 °C and finishes at 540 °C, and the second step has an onset at 540 °C and finishes with the end of the reaction between 630 and 675 °C, depending on the particle size distribution of the Nb2O5 precursor. According to the HT-XRD analysis, the perovskite phase is formed at 450 °C for all the samples, regardless of the Sr content. The formation of a polyniobate phase with a tetragonal tungsten bronze structure was detected by HT-XRD in the KNN with the largest amount of Sr dopant, i.e., 6 mol% of Sr, at 600 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Acmite Market Intelligence. Global piezoelectric device market, market report. Ratingen: Acmite Market Intelligence; 2014.

    Google Scholar 

  2. EU-Directive 2002/96/EC. Waste electrical and electronic equipment (WEEE). Off J Eur Union. 2003;46(L37):24–38.

    Google Scholar 

  3. EU-Directive 2002/95/EC. Restriction of the use of certain hazardous substances in electrical and electronic equipment (RoHS). Off J Eur Union. 2003;46(L37):19–23.

    Google Scholar 

  4. Rödel J, Webber KG, Dittmer R, Jo W, Kimura M, Damjanovic D. Transferring lead-free piezoelectric ceramics into application. J Eur Ceram Soc. 2015;35(6):1659–81.

    Article  Google Scholar 

  5. Saito Y, Takao H, Tani T, Nonoyama T, Takatori K, Homma T, et al. Lead-free piezoceramics. Nature. 2004;432(7013):84–7.

    Article  CAS  Google Scholar 

  6. Safari A, Akdogan EK, editors. Piezoelectric and acoustic materials for transducer applications. New York: Springer; 2008.

    Google Scholar 

  7. Kosec M, Kolar D. On activated sintering and electrical properties of NaKNbO3. Mater Res Bull. 1975;10(5):335–9.

    Article  CAS  Google Scholar 

  8. Malič B, Koruza J, Hreščak J, Bernard J, Wang K, Fisher JG, et al. Sintering of lead-free piezoelectric sodium potassium niobate ceramics. Materials. 2015;8:8117–46.

    Article  Google Scholar 

  9. Jaffe B, Cook WR, Jaffe H. Piezoelectric ceramics. London: Academic Press; 1971.

    Google Scholar 

  10. Shannon RD. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr A. 1976;32(5):751–67.

    Article  Google Scholar 

  11. Malic B, Bernard J, Holc J, Jenko D, Kosec M. Alkaline-earth doping in (K, Na)NbO3 based piezoceramics. J Eur Ceram Soc. 2005;25(12):2707–11.

    Article  CAS  Google Scholar 

  12. Malic B, Bernard J, Holc J, Kosec M. Strontium doped K0.5Na0.5NbO3 based piezoceramics. Ferroelectrics. 2005;314:149–56.

    Article  CAS  Google Scholar 

  13. Maeder MD, Damjanovic D, Setter N. Lead free piezoelectric materials. J Electroceram. 2004;13(1):385–92.

    Article  CAS  Google Scholar 

  14. Acker J, Kungl H, Hoffmann MJ. Influence of alkaline and niobium excess on sintering and microstructure of sodium-potassium niobate (K0.5 Na0.5)NbO3. J Am Ceram Soc. 2010;93(5):1270–81.

    CAS  Google Scholar 

  15. Birol H, Damjanovic D, Setter N. Preparation and characterization of (K0.5Na0.5)NbO3 ceramics. J Eur Ceram Soc. 2006;26(6):861–6.

    Article  CAS  Google Scholar 

  16. Tellier J, Malic B, Dkhil B, Jenko D, Cilensek J, Kosec M. Crystal structure and phase transitions of sodium potassium niobate perovskites. Solid State Sci. 2009;11(2):320–4.

    Article  CAS  Google Scholar 

  17. Malic B, Jenko D, Holc J, Hrovat M, Kosec M. Synthesis of sodium potassium niobate: a diffusion couples study. J Am Ceram Soc. 2008;91(6):1916–22.

    Article  CAS  Google Scholar 

  18. Hreščak J, Bencan A, Rojac T, Malič B. The influence of different niobium pentoxide precursors on the solid-state synthesis of potassium sodium niobate. J Eur Ceram Soc. 2013;33(15–16):3065–75.

    Google Scholar 

  19. Priya S, Nahm S, editors. Lead-free piezoelectrics. New York: Springer; 2012.

    Google Scholar 

  20. Malič B, Jenko D, Starowicz M, Bernard J, Kosec M, editors. Processing and characterization of (K, Na)NbO3 based piezoceramics. In: International conference on microelectronics, devices and materials, vol 38. Lipica, Slovenia: MIDEM—society for microelectronics, electronic components and materials; 2002.

  21. Jenko D. Synthesis of (K, Na)NbO3 ceramics [Ph.D. thesis]. Ljubljana: University of Ljubljana; 2006.

  22. Opravil T, Ptáček P, Šoukal F, Bartoníčková E, Wasserbauer J. Solid-state synthesis of SrY2O4 and SrSm2O4: mechanism and kinetics of synthesis, reactivity with water and thermal stability of products. J Therm Anal Calorim. 2016;123:181–94.

    Article  CAS  Google Scholar 

  23. Arora C, Sharma A, Soni S, Naik Y, Ramarao G. Solid-state reaction of strontium oxalate with uranium oxalate: application of TG. J Therm Anal Calorim. 2016;124:43–9.

    Article  CAS  Google Scholar 

  24. Liptay G. Atlas of thermoanalytical curves. Budapest: Akademiai Kiado; 1974.

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Slovenian Research Agency, under Grants P2-0105 and PR-03727. The authors would like to thank Edi Kranjc for measuring the HT-XRD of the samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jitka Hreščak.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hreščak, J., Malič, B., Cilenšek, J. et al. Solid-state synthesis of undoped and Sr-doped K0.5Na0.5NbO3 . J Therm Anal Calorim 127, 129–136 (2017). https://doi.org/10.1007/s10973-016-5615-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-016-5615-3

Keywords

Navigation