Skip to main content
Log in

Curing reaction kinetics of HTPE polymer studied by simultaneous rheometry and FTIR measurements

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

In order to study the curing reactions of hydroxyl-terminated polyether (HTPE) with a curing agent hexamethylene diisocyanate biuret (HDIB), the rheology and chemical processes of the curing reactions have been studied by simultaneous rheometry and FTIR spectroscopy. It was shown that the gel point was a key parameter in the curing reaction of HTPE with HDIB. The gel point was at the intersection of G′ and G″ curves. The gel point was when gelation occurred. After gelation, the polymer could not flow and the viscosity and real modulus increased rapidly. The curing reaction of the HTPE/HDIB kinetics system, monitored by an FTIR technique, showed a characteristic intensity peak at 2270 cm−1, corresponding to the –N=C=O stretching vibration which decreased as a function of time and the curing reaction of the HTPE/HDIB system and obeyed a three-dimensional (spherical symmetric) diffusion model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Kim KH, Kim CK, Yoo JC, et al. Test-based thermal decomposition simulation of AP/HTPB and AP/HTPE propellants. J Propuls Power. 2011;27:822–7.

    Article  Google Scholar 

  2. Caro RI, Bellerby JM, Kronfli E. Synthesis and characterization of a hydroxy terminated polyether (HTPE) copolymer for use as a binder in composite rocket propellants. Int J Energ Mater Chem Propuls. 2007;6:289–306.

    Google Scholar 

  3. Huang ZP, Nie HY, Zhang YY, et al. Migration kinetics and mechanisms of plasticizers, stabilizers at interfaces of NEPE propellant/HTPB liner/EDPM insulation. J Hazard Mater. 2012;229:251–7.

    Article  Google Scholar 

  4. Yan DQ, Xu DD, Shi JG. A review of solid propellant binder HTPE development and its molecular design philosophy. J Solid Rocket Technol. 2009;6:644–9.

    Google Scholar 

  5. Mao KZ, Xia M, Luo YJ, et al. Effect of curing agent types on properties of HTPE polyurethane elastomer films. Chin J Explos Propellants. 2012;1:55–8.

    Google Scholar 

  6. Zhang QF, Zhang JQ. Research and development of insensitive solid propellants. Energ Mater. 2004;6:371–5.

    Google Scholar 

  7. Hedman TD, Gross ML, Davis JJ, et al. Experimental investigation of the decomposition preceding cookoff in a composite propellant. J Propuls Power. 2014;30:1667–74.

    Article  Google Scholar 

  8. Kim CK, Bae SB, Ahn JR, et al. Structure–property relationships of hydroxy-terminated polyether based polyurethane network. Polym Bull. 2008;61:225–33.

    Article  CAS  Google Scholar 

  9. Hu J, Yuan P, Zeng K, et al. Study of the curing kinetics of a benzimidazole/phthalonitrile resin system. Thermochim Acta. 2014;590:30–9.

    Article  CAS  Google Scholar 

  10. Naumann S, Speiser M, Schowner R, et al. Air stable and latent single-component curing of epoxy/anhydride resins catalyzed by thermally liberated N-heterocyclic carbenes. Macromolecules. 2014;47:4548–56.

    Article  CAS  Google Scholar 

  11. Rusli A, Cook WD, Schiller TL. Blends of epoxy resins and polyphenylene oxide as processing aids and toughening agents 2: curing kinetics, rheology, structure and properties. Polym Int. 2014;63:1414–26.

    Article  CAS  Google Scholar 

  12. Chen K, Tian C, Lu A, et al. Effect of SiO2 on rheology, morphology, thermal, and mechanical properties of high thermal stable epoxy foam. J Appl Polym Sci. 2014;131:2113–24.

    Google Scholar 

  13. Faria H, Pires F, Marques AT. Modeling the rheology of SR1500 and LY556 epoxies under manufacturer’s recommended cure cycles after viscosimetry and rheometry characterization. Polym Eng Sci. 2014;54:831–9.

    Article  CAS  Google Scholar 

  14. Fukumoto T, Thomas PS, Šimon P, et al. Estimation of the curing rate of acrylamide used as a consolidant in heritage sandstone conservation. J Therm Anal Calorim. 2014;116:619–24.

    Article  CAS  Google Scholar 

  15. Musto P, Larobina D, Cotugno S, et al. Confocal Raman imaging, FTIR spectroscopy and kinetic modelling of the zinc oxide/stearic acid reaction in a vulcanizing rubber. Polymer. 2013;54:685–93.

    Article  CAS  Google Scholar 

  16. Omrani A, Simon L, Rostami A, et al. Cure kinetics FTIR study of epoxy/nickel–imidazole system. Int J Chem Kinet. 2008;40:663–9.

    Article  CAS  Google Scholar 

  17. Sankar G, Nasar AS. Cure-reaction kinetics of amine-blocked polyisocyanates with alcohol using hot-stage Fourier transform infrared spectroscopy. J Appl Polym Sci. 2008;109:1168–76.

    Article  CAS  Google Scholar 

  18. Shi Q, Huang W, Zhang Y, et al. Curing of polyester powder coating modified with rutile nano-sized titanium dioxide studied by DSC and real-time FT-IR. J Therm Anal Calorim. 2012;108:1243–9.

    Article  CAS  Google Scholar 

  19. Arasa M, Ramis X, Salla JM, et al. Kinetic study by FTIR and DSC on the cationic curing of a DGEBA/γ-valerolactone mixture with ytterbium triflate as an initiator. Thermochim Acta. 2008;479:37–44.

    Article  CAS  Google Scholar 

  20. Ramis X, Salla JM, Mas C, et al. Kinetic study by FTIR, TMA, and DSC of the curing of a mixture of DGEBA resin and γ-butyrolactone catalyzed by ytterbium triflate. J Appl Polym Sci. 2004;92:381–93.

    Article  CAS  Google Scholar 

  21. He Y, Liao S, Chen Z, et al. Nonisothermal kinetics study with advanced isoconversional procedure and DAEM: LiNiPO4 synthesized from thermal decomposition of the precursor. J Therm Anal Calorim. 2014;115:1870–6.

    Article  Google Scholar 

  22. Pourmortazavi SM, Farhadi K, Mirzajani V, et al. Study on the catalytic effect of diaminoglyoxime on thermal behaviors, non-isothermal reaction kinetics and burning rate of homogeneous double-base propellant. J Therm Anal Calorim. 2016; 1–8.

  23. Halász L, Belina K. An investigation into the curing of epoxy powder coating systems. J Therm Anal Calorim. 2015;119:1–10.

    Article  Google Scholar 

  24. Yi JH, Zhao FQ, Wang BZ, et al. BTATz–HNIW–CMDB propellants: decomposition reaction kinetics and thermal safety. J Therm Anal Calorim. 2014;115:1227–34.

    Article  CAS  Google Scholar 

  25. Achilias DS. Investigation of the radical polymerization kinetics using DSC and mechanistic or isoconversional methods. J Therm Anal Calorim. 2014;116:1–8.

    Article  Google Scholar 

  26. Zhang Y, Chen F, Liu W, et al. Rheological behavior of the epoxy/thermoplastic blends during the reaction induced phase separation. Polymer. 2014;55:4983–9.

    Article  CAS  Google Scholar 

  27. Gu R, Mu B, Guo K. Rheological model of konjak powder-chitosan-polyvinyl alcohol blending adhesive. Trans Chin Soc Agric Eng. 2014;30:278–84.

    Google Scholar 

  28. Kalaee M, Mahdavi H, Famili MHN. Preparation of synthesized sulfide polymer through phase-transfer catalyzed polycondensation of ethylene dibromide and sodium tetrasulfide: characterization, thermal and rheological properties. J Sulfur Chem. 2014;35:1–9.

    Article  Google Scholar 

  29. Zhang Q, Huang X, Wang X, et al. Rheological study of the gelation of cross-linking polyhedral oligomeric silsesquioxanes (POSS)/PU composites. Polymer. 2014;55:1282–91.

    Article  CAS  Google Scholar 

  30. Li L, Miesch C, Sudeep P, et al. Kinetically trapped co-continuous polymer morphologies through intraphase gelation of nanoparticles. Nano Lett. 2011;11:1997–2003.

    Article  CAS  Google Scholar 

  31. Kandpal S, Saxena A. Studies on the synthesis and reaction of silicone oxirane dendrimer and their thermal and rheological properties. Eur Polymer J. 2014;58:115–24.

    Article  CAS  Google Scholar 

  32. Malkin AY, Arinstein A, Kulichikhin V. Polymer extension flows and instabilities. Prog Polym Sci. 2014;39:959–78.

    Article  CAS  Google Scholar 

  33. Chang YH, Lin KF. Physisorption of ionic salts to carbon nanotubes for enhancing dispersion and thermomechanical properties of carbon nanotube-filled epoxy resins. Compos Sci Technol. 2014;90:174–9.

    Article  CAS  Google Scholar 

  34. Xu J, Shi W, Pang W. Synthesis and shape memory effects of Si–O–Si cross-linked hybrid polyurethanes. Polymer. 2006;47:457–65.

    Article  CAS  Google Scholar 

  35. Montembault A, Viton C, Domard A. Rheometric study of the gelation of chitosan in aqueous solution without cross-linking agent. Biomacromolecules. 2005;6:653–62.

    Article  CAS  Google Scholar 

  36. Gojny FH, Schulte K. Functionalisation effect on the thermo-mechanical behaviour of multi-wall carbon nanotube/epoxy-composites. Compos Sci Technol. 2004;64:2303–8.

    Article  CAS  Google Scholar 

  37. Li J, Chen P, Ma Z, et al. Reaction kinetics and thermal properties of cyanate ester-cured epoxy resin with phenolphthalein poly (ether ketone). J Appl Polym Sci. 2009;111:2590–6.

    Article  CAS  Google Scholar 

  38. Wen QZ, Yu C, Zhu JH, et al. Studies on curing kinetics parameter of TDI-PPG-MOCA polyurethane by FTIR. Adv Mater Res. 2011;328:966–9.

    Article  Google Scholar 

  39. Wu YG, Luo YJ, Ge Z, et al. FT-IR study on the curing reaction of isophorone diisocyanate with the glycidyl azide polymer and its prepolymer with nitrocellose. Chin J Explos Propellants. 2013;1:43–6.

    Google Scholar 

  40. Shen FF, Tanver A, Luo YJ. FT-IR study on the catalytic reaction kinetics of glycidyl azide polymer with N100. Chin J Explos Propellants. 2014;37:14–8.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao-long Fu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fu, Xl., Fan, Xz. Curing reaction kinetics of HTPE polymer studied by simultaneous rheometry and FTIR measurements. J Therm Anal Calorim 125, 977–982 (2016). https://doi.org/10.1007/s10973-016-5485-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-016-5485-8

Keywords

Navigation