Skip to main content
Log in

On the low- to high proton-conducting transformation of a CsHSO4–CsH2PO4 solid solution and its parents

Physical or chemical nature?

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The first-order transition from low to superprotonic conducting phase (at 119 < T sp < 145 °C) of a solid solution of CsHSO4 and CsH2PO4 [Cs3(HSO4)2(H2PO4)] was carefully examined by using modulated and conventional differential scanning calorimetric, simultaneous thermogravimetric and differential scanning calorimetric, simultaneous thermogravimetric and mass spectroscopy, impedance spectroscopy, and temperature evolution of X-ray diffraction and scanning electron microscopy. Our results show evidence that at this temperature, the endothermic anomaly associated with the physical transformation is, instead, the response of a chemical-surface thermal decomposition. One of its products is water: part of it is evaporated and part is strongly bonded to the other decomposition products. Given that these are of polymeric nature, they constitute a host matrix that contains liquid water regions. Therefore, as part of liquid water dissolves a superficial portion of salt (providing protons), this system behaves in similar manner to a polymer electrolyte membrane (located over the salt surface) where the proton transport mechanism might include the vehicle type, using H3O+ as a charge carrier. A discussion that favors the non-existence of the superprotonic conducting phase of CsH2PO4 is also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Wang Y, Chen KS, Mishler J, Cho SC, Adroher XC. A review of polymer electrolyte membrane fuel cells: technology, applications, and needs on fundamental research. Appl Energy. 2011;88:981–1007.

    Article  CAS  Google Scholar 

  2. Haile SM, Boysen DA, Chisholm CRI, Merle RB. Solid acids as fuel cell electrolytes. Nature. 2001;410:910–3.

    Article  CAS  Google Scholar 

  3. Norby T. The promise of protonics. Nature. 2001;410:877–8.

    Article  CAS  Google Scholar 

  4. Boysen DA, Uda T, Chisholm CRI, Haile SM. High-performance solid acid fuel cells through humidity stabilization. Science. 2004;303:68–70.

    Article  CAS  Google Scholar 

  5. Baranov AI, Fedoshuk RM, Schagina NM, Shuvalov LA. Structural phase transitions to the state with anomalously high-ionic conductivity in some ferroelectric and ferroelastic crystals of the bisulfate group. Ferroelectr Lett. 1984;2(1):25–8.

    Article  CAS  Google Scholar 

  6. Baranov AI, Khiznichenko VP, Sandler VA, Shuvalov LA. Frequency dielectric dispersion in the ferroelectric and superionic phases of CsH2PO4. Ferroelectrics. 1988;81:183–6.

    Article  Google Scholar 

  7. Haile SM, Chisholm CRI, Sasaki K, Boysen DA, Uda T. Solid acid proton conductors: from laboratory curiosities to fuel cell electrolytes. Faraday Discuss. 2007;134:17–39.

    Article  CAS  Google Scholar 

  8. Uda T, Boysen DA, Haile SM. Thermodynamic, thermomechanical, and electrochemical evaluation of CsHSO4. Solid State Ion. 2005;176:127–33.

    Article  CAS  Google Scholar 

  9. Haile SM, Lentz G, Kreuer KD, Maier J. Superprotonic conductivity in Cs3(HSO4)2(H2PO4). Solid State Ion. 1995;77:128–34.

    Article  CAS  Google Scholar 

  10. Baranov AI, Merinov BV, Tregubchenko AV, Khiznichenko VP, Shuvalov LA, Schagina NM. Fast proton transport in crystals with a dynamically disordered hydrogen bond network. Solid State Ion. 1989;36:279–82.

    Article  CAS  Google Scholar 

  11. Nirsha B, Gudinitsa EN, Fakeev AA, Efremov VA, Zhanadov BV, Olikova VA. Study of the thermal dehydration of cesium dihydrogen phosphate. Russ J Inorg Chem. 1982;27:1366–9.

    CAS  Google Scholar 

  12. Nelmes RJ, Choudhary RNP. Structural studies of the monoclinic dihydrogen phosphates: a neutron-diffraction study of paraelectric CsH2PO4. Solid State Commun. 1978;26:823–6.

    Article  CAS  Google Scholar 

  13. Osterheld RK, Markowitz MM. Polymerization and depolymerization phenomena in phosphate–metaphosphate systems at higher temperatures. IV. Condensation reactions of alkali metal hydrogen phosphates. J Phys Chem. 1956;60:863–7.

    Article  CAS  Google Scholar 

  14. Litaiem H, Garcia-Granda S, Ktari L, Dammak M. The structural behaviour before the ionic–protonic superconduction phase transition and thermal properties in the caesium sulphate arsenate tellurate compound. J Therm Anal Calorim. 2016;123:391–400.

    Article  CAS  Google Scholar 

  15. Hosseini S, Mohamad AB, Kadhum AH, Wan Daud WR. Thermal analysis of CsH2PO4 nanoparticles using surfactants CTAB and F-68. J Therm Anal Calorim. 2010;99:197–202.

    Article  CAS  Google Scholar 

  16. Goñi-Urtiaga A, Presvytes D, Scott K. Solid acids as electrolyte materials for proton exchange membrane (PEM) electrolysis: review. Int J Hydrog Energy. 2012;37:3358–72.

    Article  Google Scholar 

  17. Paschos O, Kunze J, Stimming U, Maglia F. A review on phosphate based, solid state, protonic conductors for intermediate temperature fuel cells. J Phys-Condens Matter. 2011;23:234110.

    Article  CAS  Google Scholar 

  18. Ortiz E, Vargas RA, Mellander BE. Phase behaviour of the solid proton conductor CsHSO4. J Phys-Condens Matter. 2006;18:9561.

    Article  CAS  Google Scholar 

  19. Baranov AI, Shuvalov LA, Schagina NM. Superion conductivity and phase transitions in CsHSO4 and CsHSeO4. JETP Lett. 1982;36:459–62.

    Google Scholar 

  20. Pham-Thi M, Colomban P, Novak A, Blinc R. Phase transitions in superionic protonic conductors CsHSO4 and CsHSeO4. Solid State Commun. 1985;55:265–70.

    Article  CAS  Google Scholar 

  21. Belushkin AV, Adams MA, Hull S, Shuvalov LA. P-T phase diagram of CsHSO4. Neutron scattering study of structure and dynamics. Solid State Ion. 1995;77:91–6.

    Article  CAS  Google Scholar 

  22. Ke X, Tanaka I. Atomistic mechanism of proton conduction in solid CsHSO4 by a first-principles study. Phys Rev B. 2004;69(16):165114.

    Article  Google Scholar 

  23. Lee KS. Hidden nature of the high-temperature phase transitions in crystals of KH2PO4-Type: Is it a physical change? J Phys Chem Solids. 1996;57:333–42.

    Article  CAS  Google Scholar 

  24. Thilo E. Condensed phosphates and arsenates. In: Emeleus HJ, Sharpe AG, editors. Advances in inorganic chemistry and radiochemistry, vol. 4. New York: Academic Press; 1962. p. 1–75.

    Google Scholar 

  25. Taninouchi YK, Hatada N, Uda T, Awakura Y. Phase relationship of CsH2PO4–CsPO3 system and electrical properties of CsPO3. J Electrochem Soc. 2009;156:B572–9.

    Article  CAS  Google Scholar 

  26. Park JH. Possible origin of the proton conduction mechanism of CsH2PO4 crystals at high temperatures. Phys Rev B. 2004;69(5):054104.

    Article  Google Scholar 

  27. Ortiz E, Tróchez JC, Vargas RA. Phase behaviour of the solid proton conductor CsHSeO4. J Phys-Condens Matter. 2008;20:365218.

    Article  Google Scholar 

  28. León C, Lucía ML, Santamaría J, Sánchez-Quesada F. Universal scaling of the conductivity relaxation in crystalline ionic conductors. Phys Rev B. 1988;57(1):41–4.

    Article  Google Scholar 

  29. Díaz-Guillén MR, Moreno KJ, Díaz-Guillén JA, Fuentes AF, Ngai KL, Garcia-Barriocanal J, Santamaria J, Leon C. Cation size effects in oxygen ion dynamics of highly disordered pyrochlore-type ionic conductors. Phys Rev B. 2008;78(10):104304.

    Article  Google Scholar 

  30. Haile SM, Kreuer KD, Maier J. Structure of Cs3(HSO4)2(H2PO4)—a new compound with a superprotonic phase transition. Acta Crystallogr B. 1995;51:680–7.

    Article  Google Scholar 

  31. Suzuki KI, Hayashi S. Proton dynamics in Cs3(HSO4)2(HPO4) studied by 1H NMR. Solid State Ion. 2006;177:2873–80.

    Article  CAS  Google Scholar 

  32. Bronowska W. Comment on “Does the structural superionic phase transition at 231 °C in CsH2PO4 really not exist?”. Chem Phys. 2001;114(1):611–2.

    CAS  Google Scholar 

  33. Yamada K, Sagara T, Yamane Y, Ohki H, Okuda T. Superprotonic conductor CsH2PO4 studied by 1H, 31P NMR and X-ray diffraction. Solid State Ion. 2004;175:557–62.

    Article  CAS  Google Scholar 

  34. Yamane Y, Yamada K, Inoue K. Superprotonic solid solutions between CsHSO4 and CsH2PO4. Solid State Ion. 2008;179:483–8.

    Article  CAS  Google Scholar 

  35. Boysen DA, Haile SM, Liu H, Secco RA. High-temperature behavior of CsH2PO4 under both ambient and high pressure conditions. Chem Mater. 2003;15:727–36.

    Article  CAS  Google Scholar 

  36. Sinitsyn VV, Ponyatovskiĭ EG, Baranov AI, Tregubchenko AV, Shuvalov LA. Proton-conductivity anisotropy in CsHSO4, and CsDSO4 crystals and its response to hydrostatic pressure. Sov Phys JETP. 1991;73:386–93.

    Google Scholar 

  37. Lim AR, Chang JH, Kim HJ, Park HM. Phase transition and ferroelastic property studied by using the 133Cs nuclear magnetic resonance in a CsHSO4 single crystal. Solid State Commun. 2004;129:123–7.

    Article  CAS  Google Scholar 

  38. Ortiz E, Vargas RA, Mellander BE. On the high-temperature phase transitions of CsH2PO4: a polymorphic transition? A transition to a superprotonic conducting phase? J Chem Phys. 1999;110:4847–53.

    Article  CAS  Google Scholar 

  39. Ortiz E, Vargas R, Mellander BE. On the high-temperature phase transitions of some KDP-family compounds: A structural phase transition? A transition to a bulk-high proton conducting phase? Solid State Ion. 1999;125:177–85.

    Article  CAS  Google Scholar 

  40. Merle RB, Chisholm CR, Boysen DA, Haile SM. Instability of sulfate and selenate solid acids in fuel cell environments. Energy Fuels. 2003;17:210–5.

    Article  CAS  Google Scholar 

  41. Fukami T, Tahara S, Nakasone K. Thermal properties and structures of CsHSO4 and CsDSO4 crystals. Int Res J Pure Appl Chem. 2014;4(6):621–37.

    Article  Google Scholar 

  42. Funke K. Solid state ionics: from Michael Faraday to green energy—the European dimension. Sci Technol Adv Mater. 2013;14:043502.

    Article  Google Scholar 

  43. Hull S. Superionics: crystal structures and conduction processes. Rep Prog Phys. 2004;67:1233.

    Article  CAS  Google Scholar 

  44. Lee KS. Surface transformation of hydrogen-bonded crystals at high-temperatures and topochemical nature. Ferroelectrics. 2002;268:369–71.

    Article  Google Scholar 

  45. Chisholm CRI. Superprotonic phase transitions in solid acids: parameters affecting the presence and stability of superprotonic transitions in the MHnXO4 family of compounds (X = S, Se, P, As; M = Li, Na, K, NH4, Rb, Cs). PhD thesis California Institute of Technology. 2002. http://resolver.caltech.edu/CaltechETD:etd-01292003-150309. Accessed 2 Jan 2016.

  46. Reading M, Luget A, Wilson R. Modulated differential scanning calorimetry. Thermochim Acta. 1994;238:295–307.

    Article  CAS  Google Scholar 

  47. Ortiz E, Vargas RA, Tróchez JC, Bornacelli J, Nuñez H. On the novel superprotonic conductor material β -Cs3(HSO4)2[H2−x (P1−x , S x )O4)] (x ∼ 0.5): Does it behave as a solid phase? Phys Status Solidi C. 2007;4:4070–4.

    Article  CAS  Google Scholar 

  48. Ponomareva VG, Uvarov NF, Lavrova GV, Hairetdinov EF. Composite protonic solid electrolytes in the CsHSO4-SiO2 system. Solid State Ion. 1996;90:161–6.

    Article  CAS  Google Scholar 

  49. Ikeda A. Superprotonic solid acids: thermochemistry, structure, and conductivity. Ph.D. thesis California Institute of Technology. 2013. http://resolver.caltech.edu/CaltechTHESIS:09142012-115522353. Accessed 2 Jan 2016.

  50. Otomo J, Minagawa N, Wen CJ, Eguchi K, Takahashi H. Protonic conduction of CsH2PO4 and its composite with silica in dry and humid atmospheres. Solid State Ion. 2003;156:357–69.

    Article  CAS  Google Scholar 

  51. Yokota S. Ferrroelastic phase transition of CsHSeO4. J Phys Soc Jpn. 1982;51:1884–91.

    Article  CAS  Google Scholar 

  52. Ikeda A, Kitchaev DA, Haile SM. Phase behavior and superprotonic conductivity in the Cs1−x Rb x H2PO4 and Cs1−x K x H2PO4 systems. J. Mater Chem A. 2014;2(1):204–14.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to Professor Bengt-Erik Mellander (Department of Applied Physics, Chalmers University of Technology, Gothenburg-Sweden) for the useful discussions about the design of the project that generated, as a product, this contribution.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Ortiz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ortiz, E., Piñeres, I. & León, C. On the low- to high proton-conducting transformation of a CsHSO4–CsH2PO4 solid solution and its parents. J Therm Anal Calorim 126, 407–419 (2016). https://doi.org/10.1007/s10973-016-5474-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-016-5474-y

Keywords

Navigation