Skip to main content
Log in

Phase transitions in mayenite

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

This paper was devoted to explanation of the phase transitions nature in Ca12Al14O33±δ which were studied by a combination of methods: simultaneous thermal analysis, high-temperature X-ray diffraction analysis, Raman spectroscopy. One of the phase transitions is assumed to be connected with peroxide ions appearance/disappearance in mayenite at 922 K. The peroxide ions appearance reduces the system’s energy. Peroxide ions are responsible for the interaction of mayenite with water giving hydroxyl ions. Another phase transition at 1268 K is caused by changing in stability of electronic defects in mayenite. This paper enlightens correlations between the electronic defects state, the peroxide ions existence and chemical properties of Ca12Al14O33±δ .

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Kofstad PK. Nonstoichiometry, diffusion and electrical conductivity in binary metal oxides (science and technology of materials). New York: Wiley; 1972.

    Google Scholar 

  2. West AR. Solid state chemistry and it’s applications V1. New York: Wiley; 1984.

    Google Scholar 

  3. Artacho E, Yndurain F, Pajot B, Ramırez R, Herrero CP, Khirunenko LI, Itoh KM, Haller EE. Interstitial oxygen in germanium and silicon. Phys Rev B. 1997;56(7):3820–33.

    Article  CAS  Google Scholar 

  4. Imlach JA, Glasser LSD, Glasser FP. Excess oxygen and the stability of 12CaO·7Al2O3. Cement Concrete Res. 1971;1:57–61.

    Article  CAS  Google Scholar 

  5. Christensen AN. Neutron powder diffraction profile refinement studies on Ca11.3Al14O32.3 and CaClO(D0.88H 0.12). Acta Chem Scand Ser A Phys Inorg Chem. 1987;41(2):110–2.

    Article  Google Scholar 

  6. Boysen H, Lerch M, Stys A, Senyshyn A. Structure and oxygen mobility in mayenite (Ca12Al14O33): a high-temperature neutron powder diffraction study. Acta Cryst. 2007;B63:675–8.

    Article  Google Scholar 

  7. Janek J, Lee D-K. Defect chemistry of the mixed conducting cage compound Ca12Al14O33. J Korean Ceram Soc. 2010;47(2):99–105.

    Article  CAS  Google Scholar 

  8. Hayashi K, Hirano M, Matsuishi S, Hosono H. Microporous crystal 12CaO·7Al2O3 encaging abundant O radicals. J Am Chem Soc. 2002;124(5):738–9.

    Article  CAS  Google Scholar 

  9. Jeevaratnam J, Glasser FP, Glasser LSD. Anion substitution and structure of 12CaO·7Al2O3. J Am Ceram Soc. 1964;47(2):105–6.

    Article  CAS  Google Scholar 

  10. Lacerda M, Irvine JTS, Glasser FP, West AR. High oxide ion conductivity in Ca12Al14O33. Nature. 1988;332(7):525–6.

    Article  CAS  Google Scholar 

  11. Hayashi K, Matsuishi S, Kamiya T, Hirano M, Hosono H. Light-induced conversion of an insulating refractory oxide into a persistent electronic conductor. Nature. 2002;419(3):462–4.

    Article  CAS  Google Scholar 

  12. Nurse RW, Welch JH, Majumdar AJ. The 12CaO·7Al2O3 phase in the CaO–Al2O3 system. Trans Br Ceram Soc. 1965;64:323–332.

    CAS  Google Scholar 

  13. Hayashi K, Hirano M, Hosono H. Thermodynamics and kinetics of hydroxide ion formation in 12CaO·7Al2O3. J Phys Chem B. 2005;109:11900(7).

    Google Scholar 

  14. Tolkacheva AS, Shkerin SN, Korzun IV, Plaksin SV, Khrustov VR, Ordinartsev DP. Phase transition in mayenite Ca12Al14O33. Russ J Inorg Chem. 2012;57(7):1014–5 (in Russian P. 1089–5).

    Article  CAS  Google Scholar 

  15. Jeevaratnam J, Glasser LSD, Glasser FP. Structure of calcium aluminate 12CaO·7Al2O3. Nature. 1962;194(4830):764–5.

    Article  CAS  Google Scholar 

  16. Yoon SG, Kim SW, Hirano M, Yoon DH, Hosono H. Pore-free 12CaO·7Al2O3 single-crystal growth by melt state control using the floating zone method. Crystal Growth Des. 2008;8(4):1271–5.

    Article  CAS  Google Scholar 

  17. Yang S, Kondo JN, Hayashi K, Hirano M, Domen K, Hosono H. Formation and desorption of oxygen species in nanoporous crystal 12CaO·7Al2O3. Chem Mater. 2004;16:104–7.

    Article  CAS  Google Scholar 

  18. Hosono H. Functioning of traditional ceramics 12CaO·7Al2O3 utilizing built-in nano-porous structure. Sci Technol Adv Mater. 2004;5:409–16.

    Article  CAS  Google Scholar 

  19. Sushko PV, Shluger AL, Hirano M, Hosono H. From insulator to electride: a theoretical model of nanoporous oxide 12CaO·7Al2O3. J Am Chem Soc. 2007;129:942–51.

    Article  CAS  Google Scholar 

  20. Matsuishi S, Kim SW, Kamiya T, Hirano M, Hosono H. Localized and delocalized electrons in room-temperature stable electride [Ca24Al28O64]4+(O2−)2−x(e)2x: analysis of optical reflectance spectra. J Phys Chem C. 2008;112(12):4753–8.

    Article  CAS  Google Scholar 

  21. Kim SW, Matsuishi S, Miyakawa M, Hayashi K, Hirano M, Hosono H. Fabrication of room temperature-stable 12CaO·7Al2O3 electride: a review. J Mater Sci Mater Electron. 2007;18:S5–14.

    Article  CAS  Google Scholar 

  22. Kamiya T, Hosono H. Built-in quantium dots in nano-porous crystal 12CaO·7Al2O3: simplified views for electronic structure and carrier transport. Jpn J Appl Phys. 2005;44(1B):774–9.

    Article  CAS  Google Scholar 

  23. McLeod JA, Buling A, Kurmaev EZ, Sushko PV, Neumann M, Finkelstein LD, Kim SW, Hosono H, Moewes A. Experimental evidence of cage conduction bands in superconducting cement 12CaO·7Al2O3. Phys Rev B. 2012. doi:10.1103/PhysRevB.85.045204.

    Google Scholar 

  24. Matsuishi S, Hayashi K, Hirano M, Tanaka I, Hosono H. Superoxide ion encaged in nanoporous crystal 12CaO·7Al2O3 studied by continuous wave and pulsed electron paramagnetic resonance. J Phys Chem B. 2004;108:18557–68.

    Article  CAS  Google Scholar 

  25. Hayashi K, Ueda N, Hirano M, Hosono H. Effect of stability and diffusivity of extra-framework oxygen species on the formation of oxygen radicals in 12CaO·7Al2O3. Solid State Ion. 2004;173(1–4):89–94.

    Article  CAS  Google Scholar 

  26. Ruszak M, Witkowski S, Sojka Z. EPR and Raman investigations into anionic redox chemistry of nanoporous 12CaO·7Al2O3 interacting with O2, H2 and N2O. Res Chem Intermed. 2007;33(8–9):689–703.

    Article  CAS  Google Scholar 

  27. Kajihara K, Matsuishi S, Hayashi K, Hirano M, Hosono H. Vibrational dynamics and oxygen diffusion in a nanoporous oxide ion conductor 12CaO·7Al2O3 studied by 18O labeling and micro-Raman spectroscopy. J Phys Chem C. 2007;111:14855–7.

    Article  CAS  Google Scholar 

  28. Nishioka M, Nanjyo H, Hamakawa S, Kobayashi K, Sato K, Inoue T, Mizukami F, Sadakata M. O emission from 12CaO·7Al2O3 and MSZ composite and its application for silicon oxidation. Solid State Ion. 2006;177:2235–9.

    Article  CAS  Google Scholar 

  29. Tolkacheva AS, Shkerin SN, Plaksin SV, Vovkotrub EG, Bulanin KM, Kochedykov VA, Ordinartsev DP, Gyrdasova OI, Molchanova NG. Synthesis of dense ceramics of single-phase mayenite (Ca12Al14O32)O. Russ J Appl Chem. 2011;84(6):907–11 (original Russian text published in Zhurnal prikladnoi khimii 84(6): 881–7).

    Article  CAS  Google Scholar 

  30. Olszak-Humienik M, Jablonski M. Thermal behavior of natural dolomite. J Thermal Anal Calorim. 2015;119(3):2239–48.

    Article  CAS  Google Scholar 

  31. Madej D, Szczerba J. Study of the hydration of calcium zirconium aluminate (Ca7ZrAl6O18) blended with reactive alumina by calorimetry, thermogravimetry and other methods. J Thermal Anal Calorim. 2015;121(2):579–88.

    Article  CAS  Google Scholar 

  32. Chebotin V., Perfiliev M. Electrochemistry of solid electrolytes. Washington: Technical Information Center, U.S. Department of Energy; 1984.

  33. Lee D-K, Kogel L, Ebbinghaus S, Valov I, Wiemhoefer H-D, Lerch M, Janek J. Defect chemistry of the cage compound, Ca12Al14O33-δ—understanding the route from a solid electrolyte to a semiconductor and electride. Phys Chem Chem Phys. 2009;11:3105–10.

    Article  CAS  Google Scholar 

  34. I. I. Vol’nov Peroxide compounds of Alkaline Earth Metals. M.:Nauka, 1983 in Russian/was republished in English I. I. Vol’nov Peroxides, Superoxides, and Ozonides of Alkali and Alkaline Earth Metals. US: Springer, http://www.springer.com/gp/book/9781468482546?wt_mc=ThirdParty.SpringerLink.3.EPR653.About_eBook.

  35. Rankin GA, Wright FE. Ternary system CaO–Al2O3–SiO2. Am J Sci 4th Ser. 1915;39(1):1–79.

    Article  CAS  Google Scholar 

  36. Hallstedt B. Assessment of the CaO–Al2O3 system. J Am Ceram Soc. 1990;73(1):15–9.

    Article  CAS  Google Scholar 

  37. Büssem W, Eitel A. Die Struktur des Pentacalciumaluminats. Z Krist. 1936;95:175–88.

    Google Scholar 

  38. Welch JH. Chemistry of cements. 2 ed. V. 1. Taylor HFW, editor. London: Academic Press; 2004.

Download references

Acknowledgements

The authors are grateful to Chebykin V.V. for the thermodynamic simulations on the HSC5 program, the colleagues from the shared access center “Ural-M” Titova S.G. and Fedorova O.M. for the X-ray high-temperature investigation. A part of the X-ray investigation was performed by Antonov B.D. Also we express our thanks to the shared access center “Composition of compounds” Institute of High-Temperature Electrochemistry Ural Branch of the Russian Academy of Sciences for providing facilities for structural investigations. The research work was financially supported by the Russian Foundation for Basic Research (Grant Nos. 13-08-96020, 14-03-31091) and the Government of Sverdlovsk Region.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. N. Shkerin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shkerin, S.N., Tolkacheva, A.S., Korzun, I.V. et al. Phase transitions in mayenite. J Therm Anal Calorim 124, 1209–1216 (2016). https://doi.org/10.1007/s10973-016-5282-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-016-5282-4

Keywords

Navigation