Skip to main content
Log in

Experimental investigation of pressure drop and heat transfer performance of amino acid-functionalized MWCNT in the circular tube

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

In this research, an experimental study was conducted to clarify the forced convective heat transfer coefficient and pressure drop of water-based nanofluid including multi-walled carbon nanotubes (MWCNT) flowing through a horizontal circular tube. In order to prepare a stable colloidal suspension in aqueous media, two methods of non-covalent and covalent functionalizations were used by gum Arabic (GA) and arginine (Arg), respectively. Both nanofluids of MWCNT-GA/water and MWCNT-Arg/water were prepared at concentrations of 0.1 and 0.2 mass%, and they were investigated in a laminar regime (Re = 800–2000) at constant heat flux. A significant increase in the convective heat transfer coefficient with the addition of the Arg-functionalized MWCNT was the main achievement. Also, the convective heat transfer coefficient increased with increasing the nanofluid concentration and Reynolds number. Note that the thermal performance of MWCNT-Arg/water nanofluid is better than MWCNT-GA/water nanofluid. In addition, the low mass concentration of MWCNT had an insignificant effect on the pressure drop enhancement. Performance index results also showed that both prepared nanofluids are appropriate alternative for heat transfer equipment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

A :

Surface area (m2)

C p :

Specific heat (J kg−1 K−1)

D :

Tube diameter (m)

E :

Error

h :

Heat transfer coefficient (W m−2 k−1)

I :

Current (A)

k :

Thermal conductivity (W m−1 k−1)

L :

Tube length (m)

\( \dot{m} \) :

Mass flow rate (kg s−1)

Nu :

Nusselt number

Pr :

Prandtl number

\( q^{{\prime \prime }} \) :

Heat flux (W m−2)

Q :

Heat transfer rate (W)

Re :

Reynolds number

T :

Temperature (°C)

U :

Velocity (m s−1)

V :

Voltmeter (V)

x :

Axial distance (m)

ΔP :

Pressure drop

ε:

Performance index

μ:

Fluid viscosity (Pa s)

ρ:

Density (kg m−3)

φ:

Volume fraction

bf:

Base fluid

in:

Inlet

m:

Bulk

nf:

Nanofluid

np:

Nanoparticles

s:

Wall

MWCNT:

Multi-walled carbon nanotubes

MWCNT-Arg:

Functionalization of MWCNT with Arginine

References

  1. Amiri A, Sadri R, Shanbedi M, Ahmadi G, Chew B, Kazi S, et al. Performance dependence of thermosyphon on the functionalization approaches: an experimental study on thermo-physical properties of graphene nanoplatelet-based water nanofluids. Energy Convers Manag. 2015;92:322–30.

    Article  CAS  Google Scholar 

  2. Amiri A, Sadri R, Shanbedi M, Ahmadi G, Kazi S, Chew B, et al. Synthesis of ethylene glycol-treated Graphene Nanoplatelets with one-pot, microwave-assisted functionalization for use as a high performance engine coolant. Energy Convers Manag. 2015;101:767–77.

    Article  CAS  Google Scholar 

  3. Amiri A, Shanbedi M, Yarmand H, Arzani HK, Gharehkhani S, Montazer E, et al. Laminar convective heat transfer of hexylamine-treated MWCNTs-based turbine oil nanofluid. Energy Convers Manag. 2015;105:355–67.

    Article  CAS  Google Scholar 

  4. Beheshti A, Shanbedi M, Heris SZ. Heat transfer and rheological properties of transformer oil-oxidized MWCNT nanofluid. J Therm Anal Calorim. 2014;118(3):1451–60.

    Article  CAS  Google Scholar 

  5. Hemmat-Esfe M, Saedodin S, Wongwises S, Toghraie D. An experimental study on the effect of diameter on thermal conductivity and dynamic viscosity of Fe/water nanofluids. J Therm Anal Calorim. 2015;119(3):1817–24.

    Article  CAS  Google Scholar 

  6. Barbés B, Páramo R, Blanco E, Casanova C. Thermal conductivity and specific heat capacity measurements of CuO nanofluids. J Therm Anal Calorim. 2014;115(2):1883–91.

    Article  Google Scholar 

  7. Barbés B, Páramo R, Blanco E, Pastoriza-Gallego M, Piñeiro M, Legido J, et al. Thermal conductivity and specific heat capacity measurements of Al2O3 nanofluids. J Therm Anal Calorim. 2013;111(2):1615–25.

    Article  Google Scholar 

  8. Hemmat-Esfe M, Saedodin S. Turbulent forced convection heat transfer and thermophysical properties of Mgo–water nanofluid with consideration of different nanoparticles diameter, an empirical study. J Therm Anal Calorim. 2015;119(2):1205–13.

    Article  CAS  Google Scholar 

  9. Hemmat-Esfe M, Saedodin S, Mahian O, Wongwises S. Thermal conductivity of Al2O3/water nanofluids. J Therm Anal Calorim. 2014;117(2):675–81.

    Article  CAS  Google Scholar 

  10. Hosseini SM, Moghadassi AR, Henneke D, Elkamel A. The thermal conductivities enhancement of mono ethylene glycol and paraffin fluids by adding β-SiC nanoparticles. J Therm Anal Calorim. 2010;101(1):113–8.

    Article  CAS  Google Scholar 

  11. Pak BC, Cho YI. Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles. Exp Heat Transf Int J. 1998;11(2):151–70.

    Article  CAS  Google Scholar 

  12. Xuan Y, Li Q. Investigation on Convective Heat Transfer and Flow Features of Nanofluids. J Heat Transfer. 2003;125(1):151–5.

    Article  CAS  Google Scholar 

  13. Heris SZ, Nasr-Esfahany M, Etemad SG. Experimental investigation of convective heat transfer of Al2O3/water nanofluid in circular tube. Int J Heat Fluid Flow. 2007;28(2):203–10.

    Article  Google Scholar 

  14. Duangthongsuk W, Wongwises S. Heat transfer enhancement and pressure drop characteristics of TiO2-water nanofluid in a double-tube counter flow heat exchanger. Int J Heat Mass Transf. 2009;52(7):2059–67.

    Article  CAS  Google Scholar 

  15. Amiri A, Sadri R, Ahmadi G, Chew BT, Kazi SN, Shanbedi M, et al. Synthesis of polyethylene glycol-functionalized multi-walled carbon nanotubes with a microwave-assisted approach for improved heat dissipation. RSC Adv. 2015;5(45):35425–34.

    Article  CAS  Google Scholar 

  16. Amiri A, Shanbedi M, Amiri H, Zeinali Heris S, Kazi SN, Chew BT, et al. Pool boiling heat transfer of CNT/water nanofluids. Appl Therm Eng. 2014;71(1):450–9.

    Article  CAS  Google Scholar 

  17. Amiri A, Shanbedi M, Savari M, Chew BT, Kazi SN. Cadmium ion sorption from aqueous solutions by high surface area ethylenediaminetetraacetic acid- and diethylene triamine pentaacetic acid-treated carbon nanotubes. RSC Adv. 2015;5(87):71144–52.

    Article  CAS  Google Scholar 

  18. Shanbedi M, Heris SZ, Baniadam M, Amiri A, Maghrebi M. Investigation of heat-transfer characterization of EDA-MWCNT/DI-water nanofluid in a two-phase closed thermosyphon. Ind Eng Chem Res. 2012;51(3):1423–8.

    Article  CAS  Google Scholar 

  19. Shanbedi M, Heris SZ, Amiri A, Baniadam M. Improvement in heat transfer of a two-phased closed thermosyphon using silver-decorated MWCNT/water. J Dispers Sci Technol. 2014;35(8):1086–96.

    Article  CAS  Google Scholar 

  20. Shanbedi M, Heris SZ, Baniadam M, Amiri A. The effect of multi-walled carbon nanotube/water nanofluid on thermal performance of a two-phase closed thermosyphon. Exp Heat Transf. 2013;26(1):26–40.

    Article  CAS  Google Scholar 

  21. Shanbedi M, Heris SZ, Maskooki A. Experimental investigation of stability and thermophysical properties of carbon nanotubes suspension in the presence of different surfactants. J Therm Anal Calorim. 2015;120(2):1193–201.

    Article  CAS  Google Scholar 

  22. Shanbedi M, Heris SZ, Maskooki A, Eshghi H. Statistical analysis of laminar convective heat transfer of MWCNT-deionized water nanofluid using the response surface methodology. Numer Heat Transf A Appl. 2015;68(4):454–69.

    Article  CAS  Google Scholar 

  23. Błachnio M, Staszczuk P, Grodzicka G. Adsorption and porosity properties of pure and modified carbon nanotube surfaces. J Therm Anal Calorim. 2008;94(3):641–8.

    Article  Google Scholar 

  24. Zhang F, Li Q, Liu Y, Zhang S, Wu C, Guo W. Improved thermal conductivity of polycarbonate composites filled with hybrid exfoliated graphite/multi-walled carbon nanotube fillers. J Therm Anal Calorim. 2015. doi:10.1007/s10973-015-4903-7.

  25. Staszczuk P, Rycyk M. Studies of adsorption and total heterogeneity properties of pure and modified carbon nanotube surfaces. J Therm Anal Calorim. 2013;114(3):1125–33.

    Article  CAS  Google Scholar 

  26. Kiricsi I. Thermal behavior of multiwall carbon nanotube/zeolite nanocomposites. J Therm Anal Calorim. 2005;79(3):567–72.

    Article  Google Scholar 

  27. Upadhyay AN, Tiwari RS, Singh K. Effect of carbon nanotube additive on the structural and thermal properties of Se85Te10Ag5 glassy alloy. J Therm Anal Calorim. 2015;122(2):547–52.

    Article  CAS  Google Scholar 

  28. Hemmat-Esfe M, Naderi A, Akbari M, Afrand M, Karimipour A. Evaluation of thermal conductivity of COOH-functionalized MWCNTs/water via temperature and solid volume fraction by using experimental data and ANN methods. J Therm Anal Calorim. 2015;121(3):1273–8.

    Article  CAS  Google Scholar 

  29. Abbasi S, Zebarjad S, Baghban S, Youssefi A, Ekrami-Kakhki M-S. Experimental investigation of the rheological behavior and viscosity of decorated multi-walled carbon nanotubes with TiO2 nanoparticles/water nanofluids. J Therm Anal Calorim. 2015. doi:10.1007/s10973-015-4878-4.

    Google Scholar 

  30. Liu L, Zhang S, Shi B, Mai D, Du X, Lin B. Synthesis and thermal analysis of methacrylate ester-based linear triblock copolymers-grafted multiwalled carbon nanotubes. J Therm Anal Calorim. 2015;119(3):2029–37.

    Article  CAS  Google Scholar 

  31. Faulkner DJ, Rector DR, Davidson JJ, Shekarriz R, editors. Enhanced heat transfer through the use of nanofluids in forced convection. In: Proceedings of the ASME international mechanical engineering congress and exposition, California; 2004.

  32. Amrollahi A, Rashidi A, Lotfi R, Emami-Meibodi M, Kashefi K. Convection heat transfer of functionalized MWNT in aqueous fluids in laminar and turbulent flow at the entrance region. Int Commun Heat Mass Transfer. 2010;37(6):717–23.

    Article  CAS  Google Scholar 

  33. Wang J, Zhu J, Zhang X, Chen Y. Heat transfer and pressure drop of nanofluids containing carbon nanotubes in laminar flows. Exp Thermal Fluid Sci. 2013;44:716–21.

    Article  CAS  Google Scholar 

  34. Koós AA, Horváth ZE, Osváth Z, Tapasztó L, Niesz K, Kónya Z, et al. STM investigation of carbon nanotubes connected by functional groups. Mater Sci Eng, C. 2003;23(6–8):1007–11.

    Article  Google Scholar 

  35. Zardini HZ, Amiri A, Shanbedi M, Maghrebi M, Baniadam M. Enhanced antibacterial activity of amino acids-functionalized multi walled carbon nanotubes by a simple method. Colloids Surf B. 2012;92:196–202.

    Article  CAS  Google Scholar 

  36. Santangelo S, Messina G, Faggio G, Abdul-Rahim S, Milone C. Effect of sulphuric–nitric acid mixture composition on surface chemistry and structural evolution of liquid-phase oxidised carbon nanotubes. J Raman Spectrosc. 2012;43(10):1432–42.

    Article  CAS  Google Scholar 

  37. Allen CL, Chhatwal AR, Williams JM. Direct amide formation from unactivated carboxylic acids and amines. Chem Commun. 2012;48(5):666–8.

    Article  CAS  Google Scholar 

  38. Brinkman H. The viscosity of concentrated suspensions and solutions. J Chem Phys. 1952;20:571.

    Article  CAS  Google Scholar 

  39. Holman JD. Experimental methods for engineers. 5th ed. New York: McGrow-Hill; 1989.

    Google Scholar 

  40. Amiri A, Zardini HZ, Shanbedi M, Maghrebi M, Baniadam M, Tolueinia B. Efficient method for functionalization of carbon nanotubes by lysine and improved antimicrobial activity and water-dispersion. Mater Lett. 2012;72:153–6.

    Article  CAS  Google Scholar 

  41. Amiri A, Memarpoor-Yazdi M, Shanbedi M, Eshghi H. Influence of different amino acid groups on the free radical scavenging capability of multi walled carbon nanotubes. J Biomed Mater Res, Part A. 2013;101(8):2219–28.

    Article  Google Scholar 

  42. Heris SZ, Fallahi M, Shanbedi M, Amiri A. Heat transfer performance of two-phase closed thermosyphon with oxidized CNT/water nanofluids. Heat Mass Transf. 2015. doi:10.1007/s00231-015-1548-9.

    Google Scholar 

  43. Shah R, editor. Thermal entry length solutions for the circular tube and parallel plates. In: Proceedings of the 3rd national heat mass transfer conference. Volume; 1975; Indian Institute of Technology, Bombay.

  44. Ding Y, Alias H, Wen D, Williams RA. Heat transfer of aqueous suspensions of carbon nanotubes (CNT nanofluids). Int J Heat Mass Transf. 2006;49(1):240–50.

    Article  CAS  Google Scholar 

  45. Garg P, Alvarado JL, Marsh C, Carlson TA, Kessler DA, Annamalai K. An experimental study on the effect of ultrasonication on viscosity and heat transfer performance of multi-wall carbon nanotube-based aqueous nanofluids. Int J Heat Mass Transf. 2009;52(21):5090–101.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Iran Nanotechnology Initiative Council for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saeed Zeinali Heris.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 136 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hosseinipour, E., Heris, S.Z. & Shanbedi, M. Experimental investigation of pressure drop and heat transfer performance of amino acid-functionalized MWCNT in the circular tube. J Therm Anal Calorim 124, 205–214 (2016). https://doi.org/10.1007/s10973-015-5137-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-015-5137-4

Keywords

Navigation