Skip to main content
Log in

Comparative thermal stability of two similar-structure hypolipidemic agents

Simvastatin and Lovastatin—kinetic study

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Simvastatin (SIM) and lovastatin (LOV) are two important active pharmaceutical ingredients from statin class, prescribed in the treatment of hypercholesterolemia. Our study presents the results obtained by our research group regarding the decomposition of SIM and LOV in oxidative atmosphere, by employing three isoconversional methods, namely Friedman, Kissinger–Akahira–Sunose and Flynn–Wall–Ozawa. The results obtained by Friedman method suggested a multistep degradation, while the ones obtained by Kissinger–Akahira–Sunose and Flynn–Wall–Ozawa suggested a single-step degradation. In order to validate the results, we used the NPK method, which allowed a concrete separation and nature of processes that contributed to the degradation of both statins. NPK method showed that both SIM and LOV are degraded by contribution of two distinctive chemical processes, and the mean values of activation energies are also reported.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Brunton LL, Lazo JS, Parker KL, editors. Goodman and Gilman’s the pharmacological basis of therapeutics. 11th ed. New York: McGraw-Hill; 2006.

    Google Scholar 

  2. Lopez-Pedrera C, Ruiz-Limon P, Valverde-Estepa A, Barbarroja N, Rodriguez-Ariza A. To cardiovascular disease and beyond: new therapeutic perspectives of statins in autoimmune diseases and cancer. Curr Drug Targets. 2012;13:829–41.

    Article  CAS  Google Scholar 

  3. Liu J, Zhang J, Shi Y, Grimsgaard S, Alraek T, Fønnebø V. Chinese red yeast rice (Monascus purpureus) for primary hyperlipidemia: a meta-analysis of randomized controlled trials. Chin Med. 2006;1:4–8.

    Article  Google Scholar 

  4. Gunde-Cimerman N, Cimerman A. Pleurotus fruiting bodies contain the inhibitor of 3-hydroxy-3-methylglutaryl-coenzyme a reductase-lovastatin. Exp Mycol. 1995;19(1):1–6.

    Article  CAS  Google Scholar 

  5. Mielcarek J, Naskrent M, Grobelny P. Photochemical properties of simvastatin and lovastatin induced by radiation. J Therm Anal Calorim. 2009;96(1):301–5.

    Article  CAS  Google Scholar 

  6. http://www.drugbank.ca/drugs/DB00641.

  7. http://www.drugbank.ca/drugs/db00227.

  8. Souza MAF, Conceio MM, Silva MCD, Soledade LEB, Souza AG. Thermal and kinetic study of statins. Simvastatin and lovastatin. J Therm Anal Calorim. 2007;87(3):859–63.

    Article  CAS  Google Scholar 

  9. Procópio JVV, de Souza VG, da Costa RA, Correia LP, de Souza FB, Macêdo RO. Application of thermal analysis and pyrolysis coupled to GC/MS in the qualification of simvastatin pharmaceutical raw material. J Therm Anal Calorim. 2011;106:665–70.

    Article  Google Scholar 

  10. Sovizi MR, Hosseini SG. Studies on the thermal behavior and decomposition kinetic of drugs cetirizine and simvastatin. J Therm Anal Calorim. 2013;111:2143–8.

    Article  CAS  Google Scholar 

  11. Ledeti I, Vlase G, Ciucanu I, Olariu T, Fulias A, Suta LM, Belu I. Analysis of solid binary systems containing Simvastatin. Rev Chim (Bucharest). 2015;66(2):240–3.

    CAS  Google Scholar 

  12. Ledeti I, Vlase G, Vlase T, Ciucanu I, Olariu T, Fulias A, Suta LM, Todea A. Instrumental analysis of potential lovastatin-excipient interactions in preformulation studies. Rev Chim (Bucharest). 2015;66(6):879–82.

    CAS  Google Scholar 

  13. Yoshida MI, Oliveira MA, Gomes ECL, Mussel WN, Castro WV, Soares CDV. Thermal characterization of lovastatin in pharmaceutical formulations. J Therm Anal Calorim. 2011;106:657–64.

    Article  CAS  Google Scholar 

  14. Ledeti I, Vlase G, Vlase T, Suta LM, Todea A, Fulias A. Selection of solid-state excipients for simvastatin dosage forms through thermal and nonthermal techniques. J Therm Anal Calorim. 2015;121(3):1093–102. doi:10.1007/s10973-015-4832-5.

    Article  CAS  Google Scholar 

  15. Górniak A, Karolewicz B, Żurawska-Płaksej E, Pluta J. Thermal, spectroscopic, and dissolution studies of the simvastatin–acetylsalicylic acid mixtures. J Therm Anal Calorim. 2013;111:2125–32.

    Article  Google Scholar 

  16. Karolewicz B, Gajda M, Pluta J, Górniak A. The effect of Pluronic F127 on the physicochemical properties and dissolution profile of lovastatin solid dispersions. J Therm Anal Calorim doi: 10.1007/s10973-015-4935-z.

  17. Ledeti I, Vlase G, Vlase T, Fulias A. Kinetic analysis of solid-state degradation of pure pravastatin versus pharmaceutical formulation. J Therm Anal Calorim. 2015;121(3):1103–10. doi:10.1007/s10973-015-4842-3.

    Article  CAS  Google Scholar 

  18. Fuliaş A, Vlase G, Grigorie C, Ledeţi I, Albu P, Bilanin M, Vlase T. Thermal behaviour studies of procaine and benzocaine. Part 1. Kinetic analysis of the active substances under non-isothermal conditions. J Therm Anal Calorim. 2013;113(1):265–71.

    Article  Google Scholar 

  19. Vlase T, Vlase G, Doca N, Ilia G, Fuliaş A. Coupled thermogravimetric-IR techniques and kinetic analysis by non-isothermal decomposition of Cd2+ and Co2+ vinyl-phosphonates. J Therm Anal Calorim. 2009;97:467–72.

    Article  CAS  Google Scholar 

  20. Fulias A, Vlase G, Vlase T, Soica C, Heghes A, Craina M, Ledeti I. Comparative kinetic analysis on thermal degradation of some cephalosporins using TG and DSC data. Chem Cent J. 2013;7(1):70.

    Article  Google Scholar 

  21. Ledeti I, Fulias A, Vlase G, Vlase T, Bercean V, Doca N. Thermal behaviour and kinetic study of some triazoles as potential anti-inflammatory agents. J Therm Anal Calorim. 2013;114:1295–305.

    Article  CAS  Google Scholar 

  22. Friedman HL. New methods for evaluating kinetic parameters from thermal analysis data. J Polym Sci. 1965;6C:183–7.

    Google Scholar 

  23. Kissinger HE. Reaction kinetics in differential thermal analysis. Anal Chem. 1957;29:1702–6.

    Article  CAS  Google Scholar 

  24. Akahira T, Sunose T. Joint convention of four electrical institutes. Res Rep Chiba Inst Technol Sci Technol. 1971;16:22–31.

    Google Scholar 

  25. Flynn JH, Wall LA. A quick direct method for determination of activation energy from thermogravimetric data. J Polym Sci B. 1966;4:323–8.

    Article  CAS  Google Scholar 

  26. Ozawa T. A new method of analyzing thermogravimetric data. Bull Chem Soc Jpn. 1965;38:1881–6.

    Article  CAS  Google Scholar 

  27. Serra R, Nomen R, Sempere J. The non-parametric kinetics. A new method for the kinetic study of thermoanalytical data. J Therm Anal Calorim. 1998;52:933–43.

    Article  CAS  Google Scholar 

  28. Serra R, Sempere J, Nomen R. A new method for the kinetic study of thermoanalytical data: the non-parametric kinetics method. Thermochim Acta. 1998;316:37–45.

    Article  CAS  Google Scholar 

  29. Vlase T, Vlase G, Birta N, Doca N. Comparative results of kinetic data obtained with different methods for complex decomposition steps. J Therm Anal Calorim. 2007;88:631–5.

    Article  CAS  Google Scholar 

  30. Anghel M, Vlase G, Bilanin M, Vlase T, Albu P, Fulias A, Tolan I, Doca N. Comparative study on the thermal behavior of two similar triterpenes from birch. J Therm Anal Calorim. 2013;113(3):1379–85.

    Article  CAS  Google Scholar 

  31. Wall ME. Singular value decomposition and principal component analysis. In: Berrar DP, Dubitzky W, Granzow M, editors. A practical approach to microarray data analysis. Boston: Kluwer-Norwel; 2003. p. 91–109.

    Chapter  Google Scholar 

  32. Šesták J, Berggren G. Study of the kinetics of the mechanism of solid-state reactions at increasing temperatures. Thermochim Acta. 1971;3:1–12.

    Article  Google Scholar 

Download references

Acknowledgements

This work was performed at West University of Timişoara and was supported by the strategic Grant POSDRU/159/1.5/S/137750, Project “Doctoral and Postdoctoral programs support for increased competitiveness in Exact Sciences research” co-financed by the “European Social Fund within the Sectoral Operational Programme Human Resources Development 2007–2013” to Ionuţ Ledeţi.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adriana Fuliaş.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ledeţi, I., Vlase, G., Vlase, T. et al. Comparative thermal stability of two similar-structure hypolipidemic agents. J Therm Anal Calorim 125, 769–775 (2016). https://doi.org/10.1007/s10973-015-5071-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-015-5071-5

Keywords

Navigation