Skip to main content
Log in

Thermoanalytical characterization study of hair from different ethnicities

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

A characterization study of the samples of hair and animal keratin was performed to enhance the understanding of the thermal properties of the hair of the main ethnic groups. The mechanical, physicochemical and thermal properties of Caucasian, Oriental and African-ethnic hair have been widely described; however, this research adds knowledge about the thermal and analytical properties of these types of hair. To achieve such objective, thermogravimetry (TG), differential scanning calorimetry (DSC) and elemental analysis techniques were employed. To estimate the thermal stability of the hair samples, TG carried out a non-isothermal TG method kinetic study. The results obtained of TG/DTG showed similarity between the samples of hair and animal keratin, for all the events of thermal decomposition involved with mass loss. African-ethnic hair sample presented the lower thermal stability. This fact can be related to the data literature that showed that this type of ethnicity has the less tensile strength and breaks more easily than others types of the hair. Oriental hair sample showed to be, from the non-isothermal TG method kinetic study, more thermally stable than the other samples. DSC results showed that the hair samples presented melting/denaturation of the crystalline phase; however, animal keratin sample did not present such.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Robbins C. Chemical and physical behavior of human hair. 3rd ed. New York: Springer; 1994.

    Book  Google Scholar 

  2. Feughelman A. Mechanical properties and structure of alpha-keratin fibers: wool, human hair and related fibers. Sydney: University of South Wales Press; 1997.

    Google Scholar 

  3. Velasco MVR, Sá-Dias TCS, Freitas AZ, Vieira Junior ND, Kaneko TM, Baby AR. Hair fiber characteristics and methods to evaluate hair physical and mechanical properties. Braz J Pharm Sci. 2009;45(2):153–62.

    Article  Google Scholar 

  4. Astbury WT, Street A. X-ray studies of the structure of hair, wool and related fibers. I. General. Philos Trans R Soc Lond Ser A. 1931;230:75–101.

    Article  Google Scholar 

  5. Astbury WT, Woods HJ. X-ray diffraction studies of the structure of hair, wool and related fibers. II. The molecular structure and elastic properties of hair keratin. Philos Trans R Soc Lond Ser A. 1933;232:333–94.

    Article  Google Scholar 

  6. Thibaut S, Barbarat P, Leroy F, Bernard BA. Human hair keratin network and curvature. Int J Dermatol. 2007;46(1):7–10.

    Article  Google Scholar 

  7. Dias TCS, Baby AR, Kaneko TM, Velasco MVR. Relaxing/straightening of Afro-ethnic hair: historical overview. J Cosmet Dermatol. 2007;6:2–5.

    Article  Google Scholar 

  8. Franbourg A, Hallegot P, Toutain C, Leroy F. Current research on ethnic hair. J Am Acad Dermatol. 2003;48:115–9.

    Article  Google Scholar 

  9. Lima CRRC, Avila SG, Matos JR. Kinetic study thermal decomposition of bacuri (Platonia insgnis Mart.) and ucuúba (Virola sebifera Aubl.) butter using TG-isothermic method. Lat Am J Pharm. 2015;34(2):364–9.

    CAS  Google Scholar 

  10. Almeida MM, Lima CRRC, Quenca-Guillen JS, Filho EM, Mercuri LP, Santoro MIMR, Kedor-Hackmann ERM. Stability evaluation of tocopheryl acetate and ascorbyl tetraisopalmitate in isolation and incorporated in cosmetic formulations using thermal analysis. Braz J Pharm Sci. 2010;46:129–34.

    Article  Google Scholar 

  11. Almeida MM, Bou-Chacra NA, Lima CRRC, Matos JR, Filho EM, Mercuri LP, Baby AR, Kaneko TM, Velasco MVR. Characterization and evaluation of free and nanostructured ursolic acid incorporated in cosmetic formulation using thermal analysis. J Therm Anal Calorim. 2013;115:2401–6.

    Article  CAS  Google Scholar 

  12. Kobelnilk M, Fontanari GG, Cassimiro DL, Ribeiro CA, Crespi MS. Thermal behavior of coffee oil (Robusta and Arabica species). J Therm Anal Calorim. 2014;115:2045–52.

    Article  CAS  Google Scholar 

  13. Guthrie JT, Kazlauciunas A, Rongong L, Rush S. The characterization of treated and dyed hair. Dyes Pigments. 1995;29(1):23–44.

    Article  CAS  Google Scholar 

  14. Jachowicz R, McMullen J. Thermaldegradation of hair. II. Effect of selected polymers and surfactants. J Cosmet Sci. 1998;49:245–56.

    Google Scholar 

  15. Wortmann FJ, Springob C, Sendelbach G. Investigations of cosmetically treated human hair by differential scanning calorimetry in water. J Cosmet Sci. 2002;53:219–28.

    Google Scholar 

  16. Belletti KMS, Feferman IH, Mendes TRO, Piaceski AD, Monteiro VF, Carre’o NLV, Valentini A, Leite ER, Longo E. Evaluation of hair fiber hydration by differential scanning calorimetry, gas chromatography and sensory analysis. J Cosmet Sci. 2003;54:527–35.

    Google Scholar 

  17. Éhen ZS, Novák CS, Sztatisz J, Bene O. Thermal characterization of hair using TG-MS combined thermoanalytical technique. J Therm Anal Calorim. 2004;78:427–40.

    Article  Google Scholar 

  18. Cao J, Leroy F. Depression of the melting temperature by moisture for α-form crystallites in human hair keratin. Biopolymers. 2005;77:38–43.

    Article  CAS  Google Scholar 

  19. Rigoletto R, Karolak J, Koelmel D. Quantification of fiber fragmentation of hair through combing as a measure of thermal protection. J Cosmet Sci. 2009;60:278–9.

    Google Scholar 

  20. Gama RM, Balogh TS, França S, Dias TCD, Bedin V, Baby AR, Matos JR, Velasco MVR. Thermal analysis of hair treated with oxidative hair dye under influence of conditioners agents. J Therm Anal Calorim. 2011;106(2):399–405.

    Article  CAS  Google Scholar 

  21. Hartung C, Kortemeier U, Westerholt U, Winter P, Dahl V, Trambitas A, Langer S, Schwab P, Jha B. T-shaped siloxane microemulsion for improved hair conditioning and protection. Cosmet Toilet. 2013;123(8):160–8.

    Google Scholar 

  22. Benaiges A, Fernández E, Martínez-Teipel B, Armengol R, Barba C, Coderch L. Hair efficacy of botanical extracts. J Appl Polym Sci. 2013;128(1):861–8.

    Article  CAS  Google Scholar 

  23. Brebu M, Spiridon I. Thermal degradation of keratin waste. J Anal Appl Pyrol. 2011;91:288–95.

    Article  CAS  Google Scholar 

  24. Daneluti ALM, Matos JR. Study of thermal behavior of phytic acid. Braz J Pharm Sci. 2013;49(2):275–83.

    Article  CAS  Google Scholar 

  25. Marian E, Tita B, Jurca T, Fulias A, Vicas L, Tita D. Thermal behaviour of erythromycin-active substance and tablets. Part 1. Kinetic study of the active substance under non-isothermal conditions. J Therm Anal Calorim. 2013;111:1025–31.

    Article  CAS  Google Scholar 

  26. Istrate D, Popescu C, Möller M. Non-isothermal kinetics of hard α-keratin thermal denaturation. Macromol Biosci. 2009;9(8):805–12.

    Article  CAS  Google Scholar 

  27. Cides LCS, Araújo AAS, Santos-Filho M, Matos JR. Thermal behavior, compatibility study and decomposition kinetics of glimepiride under isothermal and non-isothermal conditions. J Therm Anal Calorim. 2006;84(2):441–5.

    Article  CAS  Google Scholar 

  28. Yoshida MI. Cinética e mecanismo de reações de decomposição térmica no estado sólido: influência de variações estruturais no ligante, sobre o parâmetro cinético. Belo Horizonte: UFMG; 1993.

    Google Scholar 

  29. Bischof JC, He X. Thermal stability of proteins. Ann N Y Acad Sci. 2005;1066:1.

    Article  CAS  Google Scholar 

  30. Istrate D, Popescu C, Rafik ME, Möller M. The effect of pH on the thermal stability of fibrous hard alpha-keratins. Polym Degrad Stab. 2013;98:542–9.

    Article  CAS  Google Scholar 

  31. Florence TM. Degradation of protein disulphide bonds in dilute alkali. Biochem J. 1980;189(3):507–20.

    Article  CAS  Google Scholar 

  32. Nakano AK. Comparação de danos induzidos em cabelos de três etnias por diferentes tratamentos. Campinas: Unicamp; 2006.

    Google Scholar 

  33. Ozawa T. A new method of analyzing thermogravimetric data. Bull Chem Soc Jpn. 1965;38(11):1881–6.

    Article  CAS  Google Scholar 

  34. Ozawa T. Thermal analysis: review and prospect. Thermochim Acta. 2000;355:35–42.

    Article  CAS  Google Scholar 

  35. Monteiro VF, Maciel AP, Longo E. Thermal analysis of caucasian human hair. J Therm Anal Calorim. 2005;79:289–93.

    Article  CAS  Google Scholar 

  36. Liu X, Gu S, Xu W. Thermal and structural characterization of superfine down powder. J Therm Anal Calorim. 2013;111:259–66.

    Article  CAS  Google Scholar 

  37. Gray J. The world of hair: a scientific companion. New York: Macmillan; 1997.

    Google Scholar 

  38. Marti M, Ramírez R, Manich AM, Coderch L, Parra JL. Thermal analysis of merino wool fibers without internal lipids. J Appl Polym Sci. 2007;104:545–51.

    Article  CAS  Google Scholar 

  39. Bermejo-Barrera AM, Rossi SS. Hair and urine analysis: relative distribution of drugs and their metabolites. Forensic Sci Int. 1995;70:203.

    Article  Google Scholar 

  40. Arnold W, Sachs H. Hair analysis for medicaments—the best proof for a drug career. Fresenius J Anal Chem. 1994;348:484–9.

    Article  CAS  Google Scholar 

  41. Passwater RAE, Cranton EM. Trace elements, hair analysis and nutrition. New Canaan: Keats Publishing Inc.; 1983.

    Google Scholar 

  42. Draelos ZD. Hair cosmetics. Dermatol Clin. 1991;9(1):19–27.

    CAS  Google Scholar 

  43. Popescu C, Höcker H. Hair—the most sophisticated biological composite material. Chem Soc Rev. 2007;36:1282–91.

    Article  CAS  Google Scholar 

  44. Choi SY, Kim MG, Inoue H. Determination of sulfur in biologically important substances by pyrolysis-gas chromatography. J Anal Appl Pyrol. 1995;32:127–36.

    Article  CAS  Google Scholar 

  45. Cao J, Joko K, Cook JR. DSC studies of the melting behavior of α-form crystallites in wool keratin. Text Res J. 1997;67:117–23.

    Article  CAS  Google Scholar 

  46. Wortmann FJ, Deutz HJ. Thermal analysis of ortho- and para-cortical cells isolated from wool fibers. J Appl Polym Sci. 1998;68:1991–5.

    Article  CAS  Google Scholar 

  47. Spei M, Holzem R. Thermoanalytical determination of the relative helix content of keratins. Colloid Polym Sci. 1989;257:549–51.

    Article  Google Scholar 

  48. Wortmann FJ, Deutz H. Characterizing keratins using high-pressure differential scanning calorimetry (HPDSC). J Appl Polym Sci. 1993;48:137–50.

    Article  CAS  Google Scholar 

  49. Wortmann FJ, Stapels M, Chandra L. Humidity-dependent bending recovery and relaxation of human hair. J Appl Polym Sci. 2009;113:3336–44.

    Article  CAS  Google Scholar 

  50. Chandrashekara MN, Ranganathaiah C. Chemical and photochemical degradation of human hair: a free-volume microprobe study. J Photochem Photobiol B Biol. 2010;101:286–94.

    Article  CAS  Google Scholar 

  51. Fernandes MM, Lima CF, Loureiro A, Gomes AC, Cavaco-Paulo A. Keratin-based peptide: biological evaluation and strengthening properties on relaxed hair. Int J Cosmet Sci. 2012;34:338–46.

    Article  CAS  Google Scholar 

  52. Wortmann FJ, Stapels M, Elliott R, Chandra L. The effect of water on the glass transition of human hair. Biopolymers. 2006;81:371–5.

    Article  CAS  Google Scholar 

  53. Tonetti C, Varesano A, Vineis C, Mazzuchetti G. Differential scanning calorimetry for the identification of animal hair fibers. J Therm Anal Calorim. 2015;119:1445–51.

    Article  CAS  Google Scholar 

  54. Khumalo NP, Doe PT, Dawber RP, Ferguson DJ. What is normal black African hair? A light and scanning electron-microscopic study. J Am Acad Dermatol. 2000;43:814–20.

    Article  CAS  Google Scholar 

  55. Draelos ZD. Hair care; an illustrated dermatologic handbook. London: Taylor and Francis; 2005. p. 217.

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank CAPES and CNPq for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cibele Rosana Ribeiro de Castro Lima.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lima, C.R.R.d., de Almeida, M.M., Velasco, M.V.R. et al. Thermoanalytical characterization study of hair from different ethnicities. J Therm Anal Calorim 123, 2321–2328 (2016). https://doi.org/10.1007/s10973-015-5070-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-015-5070-6

Keywords

Navigation