Skip to main content
Log in

Study on thermodynamic property for ionic liquid [C4mim][Lact](1-butyl-3-methylimidazolium lactic acid)

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Lactic acid ionic liquid [C4mim][Lact] (1-butyl-3-methylimidazolium lactic acid) was synthesized by the neutralization method. Using the solution–reaction isoperibol calorimeter, the molar enthalpies of solution, Δsol H m, with different molalities were determined in the temperature range from (288.15 to 308.15 ± 0.01) K with an interval of 5 K. In terms of Archer’s method, the standard molar enthalpy of solution for [C4mim][Lact], \( \Delta _{\text{sol}} H_{\text{m}}^{\theta } \), was obtained, and then, the values of apparent relative molar enthalpy, Φ L, and the Pitzer’s parameters \( \beta_{\text{MX}}^{(0)\text{L}} \) and \( \beta_{\text{MX}}^{(1)\text{L}} \) were determined for [C4mim][Lact]. The plot of \( \Delta _{\text{sol}} H_{\text{m}}^{\theta } \) versus (T—298.15) K is a good straight line, and its slope is the standard molar heat capacity of solution, \( \Delta C_{\text{p,m}}^{\theta } = 240\,{\text{J}}\,{\text{K}}^{ - 1} \). According to Glasser’s theory of lattice energy, the hydration enthalpy of cation and anion, (ΔH + + ΔH ) = −471 kJ mol−1, in infinite dilution and the hydration enthalpy of anion, ΔH ([Lact]) = −257 kJ mol−1, were obtained at 298.15 K. The heat capacity of aqueous [C4mim][Lact], C p(sol), and the apparent molar heat capacity, Φ C p, of various specific molalities were also obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Murillo-Hernández JA, López-Ramírez S, Domínguez JM, Duran-Valencia C, García-Cruz I, González-Guevara JA. Survey on ionic liquids effect based on metal anions over the thermal stability of heavy oil. J Therm Anal Calorim. 2009;95:173–9.

    Article  Google Scholar 

  2. Pawlak K, Szurkowski J, Skrzypczak A, Bialek-Bylka GE. The thermal deactivation of all-trans and 15-cis beta-carotene-excited states in the ionic liquids without and with methylenoxy group. J Therm Anal Calorim. 2015;120:627–32.

    Article  CAS  Google Scholar 

  3. Zhang SJ, Wang JJ, Lu XM, Zhou Q. Structures and interactions of ionic liquids. Heidelberg: Springer; 2014. p. 151–97.

    Book  Google Scholar 

  4. Fukumoto K, Yoshizawa M, Ohno H. Room temperature ionic liquids from 20 natural amino acids. J Am Chem Soc. 2005;127:2398–9.

    Article  CAS  Google Scholar 

  5. Wagner V, Schulz PS, Wasserscheid P. Asymmetric hydrogenation catalysis via ion-pairing in chiral ionic liquids. J Mol Liq. 2014;192:177–84.

    Article  CAS  Google Scholar 

  6. Navarro P, Larriba M, Beigbeder JB. Thermal stability and specific heats of [bpy][BF4] + [bpy][Tf2N] and [bpy][BF4] + [4bmpy][Tf2N] mixed ionic liquid solvents. J Therm Anal Calorim. 2015;119:1235–43.

    Article  CAS  Google Scholar 

  7. Schulz PS, Mller N, Bsmann A, Wasserscheid P. Effective chirality transfer in ionic liquids through ion-pairingeffects. Angew Chem. 2007;119:1315–7.

    Article  Google Scholar 

  8. Wu JW, Su P, Huang J, Wang SM, Yang Y. Synthesis of teicoplanin-modified hybrid magnetic mesoporous silica nanoparticles and their application in chiral separation of racemic compounds. J Colloid Interface Sci. 2013;399:107–14.

    Article  CAS  Google Scholar 

  9. Baudequin C, Bregeon D, Levillain J, Guillen F, Plaquevent JC, Gaumont AC. Chiral ionic liquids, a renewal for the chemistry of chiral solvents? Design, synthesis and applications for chiral recognition and asymmetric synthesis. Tetrahedron Asymmetry. 2005;16:3921–45.

    Article  CAS  Google Scholar 

  10. Kapnissi-Christodoulou CP, Stavrou IJ, Mavroudi MC. Chiral ionic liquids in chromatographic and electrophoretic separations. J Chromatogr A. 2014;1363:2–10.

    Article  CAS  Google Scholar 

  11. Guan W, Xue WF, Li N, Tong J. Enthalpy of solution of amino acid ionic liquid 1-butyl-3-methylimidazolium glycine. J Chem Eng Data. 2008;53:1401–3.

    Article  CAS  Google Scholar 

  12. Guan W, Li L, Wang H, Tong J, Yang JZ. study on thermochemical properties of ionic liquids based on transition metal. J Therm Anal Calorim. 2008;94(2):507–10.

    Article  CAS  Google Scholar 

  13. Archer DG, Widegren JA, Kirklin DR, Magee JW. Enthalpy of solution of 1-octyl-3-methylimidazolium tetrafluoroborate in water and in aqueous sodium fluoride. J Chem Eng Data. 2005;50:1484–91.

    Article  CAS  Google Scholar 

  14. Wilkes JS, Levisky JA, Wilson RA, Hussey CL. Dialkylimidazolium chloroaluminate melts: a new class of room-temperature ionic liquids for electrochemistry. Inorg Chem. 1982;21:1263–8.

    Article  CAS  Google Scholar 

  15. Di YY, Qu SS, Liu Y, Wen DC, Tang H, Li LW. A thermochemical study of the solid-state coordination reactions of two α-amino acids with copper(II) acetate. J Thermochim Acta. 2002;387:115–9.

    Article  CAS  Google Scholar 

  16. Liu JG, Xue WF, Qin Y, Yan CW. Enthalpy of solution for anhydrous VOSO4 and estimated enthalpy of reaction for formation of the ion pair [VOSO4]0. J Chem Eng Data. 2009;54:1938–41.

    Article  CAS  Google Scholar 

  17. Ji M, Liu MY, Gao SL, Shi QZ. A new microcalorimeter for measuring thermal effects. Instrum Sci Technol. 2001;29:53–7.

    Article  CAS  Google Scholar 

  18. Montgomery RL, Melaugh RA, Lau CC, Meier GH, Chan HH, Rossini FD. Determination of the energy equivalent of a water solution calorimeter with a standard substance. J Chem Thermodyn. 1977;9:915–36.

    Article  CAS  Google Scholar 

  19. Rychly R, Pekarek V. The use of potassium chloride and tris(hydroxymethyl)aminomethane as standard substances for solution calorimetry. J Chem Thermodyn. 1977;9:391–6.

    Article  CAS  Google Scholar 

  20. Pitzer KS. In activity coefficients in electrolyte solution, Chapter 3. Boca Raton, FL: CRC Press; 1991.

    Google Scholar 

  21. Glasser L. Lattice and phase transition thermodynamics of ionic liquids. Thermochim Acta. 2004;421:87–93.

    Article  CAS  Google Scholar 

  22. Glasser L, Jenkins HDB. Volume-based thermodynamics: a prescription for its application and usage in approximation and prediction of thermodynamic data. J Chem Eng Data. 2011;56:874–80.

    Article  CAS  Google Scholar 

  23. Gutowski KE, Rogers RD, Dixon DA. Accurate thermochemical properties for energetic materials applications. II. Heats of formation of imidazolium-, 1,2,4-triazolium-, and tetrazolium-based energetic salts from isodesmic and lattice energy calculations. J Phys Chem B. 2007;111:4788–800.

    Article  CAS  Google Scholar 

  24. Fang DW, Tong J, Guan W, Wang H, Yang JZ. Prediction of the thermodynamic properties of 1-alkyl-3-methylimidazolium lactate ionic liquids [Cnmim][Lact](n = 2, 3, 4, 5, and 6) by parachor. Sci Sin Chim. 2010;40(9):1339–47.

    Google Scholar 

  25. Guan W, Yang JZ, Li L, Wang H, Zhang QG. Thermochemical properties of aqueous solution containing ionic liquids. 1. The heat of reaction mixed 1-methyl-3-butylimidazolium chloride with InCl3. Fluid Phase Equilib. 2006;239:161–75.

    Article  CAS  Google Scholar 

  26. Liang XY, Zhang X, Wang SG, Li W, Rong H. A study on molar enthalpy of solution in amino acid tetrafluoroborate ionic liquids. J Beijing Inst Petrochem Technol. 2011;19:50–3.

    Google Scholar 

  27. Paulechka YU, Kabo AG, Blokhin AV, Kabo GJ, Shevelyova MP. Heat capacity of ionic liquids: experimental determination and correlations with molar volume. J Chem Eng Data. 2010;55:2719–24.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This project was supported by the National Natural Science Foundation of China (21173107) and Liaoning Excellent Talents in University (2015025).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Guan.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 178 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, L., Bu, XX., Fan, BH. et al. Study on thermodynamic property for ionic liquid [C4mim][Lact](1-butyl-3-methylimidazolium lactic acid). J Therm Anal Calorim 123, 1619–1625 (2016). https://doi.org/10.1007/s10973-015-5051-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-015-5051-9

Keywords

Navigation