Skip to main content
Log in

Performance evaluation of latent heat energy storage in horizontal shell-and-finned tube for solar application

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Thermal energy storage plays a key role in improving the efficiency of solar applications. In this study, the energy storage behavior (melting or charging) and energy removal process (solidification or discharging) are investigated in the presence of paraffin wax as a phase-change material (PCM) in a horizontal shell-and-finned tube. The horizontal shell-and-finned tube comprises 24 and 48 radial fins for investigation in the laminar regime. The effect of external fin surface area on the heat transfer between the PCM and heat transfer fluid (HTF), distilled water, was studied. To realize this issue, the PCM charging and discharging times at different Reynolds number of HTF were investigated in the presence of both series of fins (24 and 48 fins). Along with a significant improvement in heat transfer with higher number of fin, the results concluded that a change in the HTF flow rate presents more influence on the PCM charging process as compared with discharging process. Also, the charging time was reduced 58 and 76 % by increasing HTF flow rate and fins density, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Jeon J, Lee J-H, Seo J, Jeong S-G, Kim S. Erratum to: application of PCM thermal energy storage system to reduce building energy consumption. J Therm Anal Calorim. 2014;116(1):539. doi:10.1007/s10973-012-2408-1.

    Article  CAS  Google Scholar 

  2. Harikrishnan S, Deepak K, Kalaiselvam S. Thermal energy storage behavior of composite using hybrid nanomaterials as PCM for solar heating systems. J Therm Anal Calorim. 2014;115(2):1563–71. doi:10.1007/s10973-013-3472-x.

    Article  CAS  Google Scholar 

  3. Anghel EM, Georgiev A, Petrescu S, Popov R, Constantinescu M. Thermo-physical characterization of some paraffins used as phase change materials for thermal energy storage. J Therm Anal Calorim. 2014;117(2):557–66. doi:10.1007/s10973-014-3775-6.

    Article  Google Scholar 

  4. Nemykin VN, Makarova EA, Grosland JO, Hadt RG, Koposov AY. Preparation, characterization, molecular and electronic structures, TDDFT, and TDDFT/PCM study of the solvatochromism in cyanovinylferrocenes. Inorg Chem. 2007;46(23):9591–601.

    Article  CAS  Google Scholar 

  5. Sato H, Sakaki S. Comparison of electronic structure theories for solvated molecules: RISM-SCF versus PCM. J Phys Chem A. 2004;108(9):1629–34.

    Article  CAS  Google Scholar 

  6. Çakmak G, Yıldız C. The drying kinetics of seeded grape in solar dryer with PCM-based solar integrated collector. Food Bioprod Process. 2011;89(2):103–8.

    Article  Google Scholar 

  7. Al-Abidi AA, Mat S, Sopian K, Sulaiman M, Mohammad AT. Numerical study of PCM solidification in a triplex tube heat exchanger with internal and external fins. Int J Heat Mass Transf. 2013;61:684–95.

    Article  Google Scholar 

  8. Maruoka N, Akiyama T. Thermal stress analysis of PCM encapsulation for heat recovery of high temperature waste heat. J Chem Eng Jpn. 2003;36(7):794–8.

    Article  CAS  Google Scholar 

  9. Maruoka N, Sato K, Yagi J-i, Akiyama T. Development of PCM for recovering high temperature waste heat and utilization for producing hydrogen by reforming reaction of methane. ISIJ Int. 2002;42(2):215–9.

    Article  CAS  Google Scholar 

  10. Stritih U, Butala V. Experimental investigation of energy saving in buildings with PCM cold storage. Int J Refrig. 2010;33(8):1676–83.

    Article  Google Scholar 

  11. Mettawee E-BS, Assassa GM. Experimental study of a compact PCM solar collector. Energy. 2006;31(14):2958–68.

    Article  Google Scholar 

  12. Wang Y, Tang B, Zhang S. Light–thermal conversion organic shape-stabilized phase-change materials with broadband harvesting for visible light of solar radiation. RSC Adv. 2012;2(30):11372–8.

    Article  CAS  Google Scholar 

  13. Tyagi VV, Pandey AK, Kaushik SC, Tyagi SK. Thermal performance evaluation of a solar air heater with and without thermal energy storage. J Therm Anal Calorim. 2012;107(3):1345–52. doi:10.1007/s10973-011-1617-3.

    Article  CAS  Google Scholar 

  14. Sharma S, Iwata T, Kitano H, Sagara K. Thermal performance of a solar cooker based on an evacuated tube solar collector with a PCM storage unit. Sol Energy. 2005;78(3):416–26.

    Article  Google Scholar 

  15. Roy I, Rana D, Sarkar G, Bhattacharyya A, Saha NR, Mondal S, et al. Physical and electrochemical characterization of reduced graphene oxide/silver nanocomposites synthesized by adopting a green approach. RSC Adv. 2015;5(32):25357–64.

    Article  CAS  Google Scholar 

  16. Lafdi K, Mesalhy O, Elgafy A. Graphite foams infiltrated with phase change materials as alternative materials for space and terrestrial thermal energy storage applications. Carbon. 2008;46(1):159–68.

    Article  CAS  Google Scholar 

  17. Liang W, Chen P, Sun H, Zhu Z, Li A. Innovative spongy attapulgite loaded with n-carboxylic acids as composite phase change materials for thermal energy storage. RSC Adv. 2014;4(73):38535–41.

    Article  CAS  Google Scholar 

  18. Mohamed MM. Solidification of phase change material on vertical cylindrical surface in holdup air bubbles. Int J Refrig. 2005;28(3):403–11.

    Article  CAS  Google Scholar 

  19. Tang Q, Sun J, Yu S, Wang G. Improving thermal conductivity and decreasing supercooling of paraffin phase change materials by n-octadecylamine-functionalized multi-walled carbon nanotubes. RSC Adv. 2014;4(69):36584–90.

    Article  CAS  Google Scholar 

  20. Sundarraj P, Maity D, Roy SS, Taylor RA. Recent advances in thermoelectric materials and solar thermoelectric generators—a critical review. RSC Adv. 2014;4(87):46860–74.

    Article  CAS  Google Scholar 

  21. Wang N, Zhang XR, Zhu DS, Gao JW. The investigation of thermal conductivity and energy storage properties of graphite/paraffin composites. J Therm Anal Calorim. 2012;107(3):949–54. doi:10.1007/s10973-011-1467-z.

    Article  CAS  Google Scholar 

  22. Mat S, Al-Abidi AA, Sopian K, Sulaiman M, Mohammad AT. Enhance heat transfer for PCM melting in triplex tube with internal–external fins. Energy Convers Manag. 2013;74:223–36.

    Article  CAS  Google Scholar 

  23. Erek A, Ilken Z, Acar MA. Experimental and numerical investigation of thermal energy storage with a finned tube. Int J Energy Res. 2005;29(4):283–301.

    Article  CAS  Google Scholar 

  24. Balikowski J, Mollendorf J. Performance of phase change materials in a horizontal annulus of a double-pipe heat exchanger in a water-circulating loop. J Heat Transf. 2007;129(3):265–72.

    Article  CAS  Google Scholar 

  25. Stritih U. An experimental study of enhanced heat transfer in rectangular PCM thermal storage. Int J Heat Mass Transf. 2004;47(12):2841–7.

    Article  CAS  Google Scholar 

  26. Blen K, Takgil F, Kaygusuz K. Thermal energy storage behavior of CaCl2·6H2O during melting and solidification. Energy Sources A. 2008;30(9):775–87.

    Article  Google Scholar 

  27. Trp A, Lenic K, Frankovic B. Analysis of the influence of operating conditions and geometric parameters on heat transfer in water-paraffin shell-and-tube latent thermal energy storage unit. Appl Therm Eng. 2006;26(16):1830–9.

    Article  CAS  Google Scholar 

  28. Shmueli H, Ziskind G, Letan R. Melting in a vertical cylindrical tube: numerical investigation and comparison with experiments. Int J Heat Mass Transf. 2010;53(19):4082–91.

    Article  CAS  Google Scholar 

  29. Jesumathy SP, Udayakumar M, Suresh S. Heat transfer characteristics in latent heat storage system using paraffin wax. J Mech Sci Technol. 2012;26(3):959–65.

    Article  Google Scholar 

  30. Zhang T, Tang Q, Lu H, Wang S, Sun L. Numerical study of melted PCM inside a horizontal annulus with threads in a three-dimensional model. RSC Adv. 2015;5(16):12178–85.

    Article  CAS  Google Scholar 

  31. Bathelt A, Viskanta R, Leidenfrost W. An experimental investigation of natural convection in the melted region around a heated horizontal cylinder. J Fluid Mech. 1979;90(02):227–39.

    Article  CAS  Google Scholar 

  32. Cao Y, Faghri A. Thermal protection from intense localized moving heat fluxes using phase-change materials. Int J Heat Mass Transf. 1990;33(1):127–38.

    Article  CAS  Google Scholar 

  33. Cao Y, Faghri A. Performance characteristics of a thermal energy storage module: a transient PCM/forced convection conjugate analysis. Int J Heat Mass Transf. 1991;34(1):93–101.

    Article  CAS  Google Scholar 

  34. Zhang Y, Faghri A. Semi-analytical solution of thermal energy storage system with conjugate laminar forced convection. Int J Heat Mass Transf. 1996;39(4):717–24.

    Article  CAS  Google Scholar 

  35. Seeniraj R, Narasimhan NL. Performance enhancement of a solar dynamic LHTS module having both fins and multiple PCMs. Sol Energy. 2008;82(6):535–42.

    Article  Google Scholar 

  36. Dutta R, Atta A, Dutta TK. Experimental and numerical study of heat transfer in horizontal concentric annulus containing phase change material. Can J Chem Eng. 2008;86(4):700–10.

    Article  CAS  Google Scholar 

  37. Ezan MA, Ozdogan M, Erek A. Experimental study on charging and discharging periods of water in a latent heat storage unit. Int J Therm Sci. 2011;50(11):2205–19.

    Article  Google Scholar 

  38. Ismail K, Lino F. Fins and turbulence promoters for heat transfer enhancement in latent heat storage systems. Exp Thermal Fluid Sci. 2011;35(6):1010–8.

    Article  CAS  Google Scholar 

  39. Hosseini M, Ranjbar A, Sedighi K, Rahimi M. A combined experimental and computational study on the melting behavior of a medium temperature phase change storage material inside shell and tube heat exchanger. Int Commun Heat Mass Transf. 2012;39(9):1416–24.

    Article  CAS  Google Scholar 

  40. Aydın O, Akgün M, Kaygusuz K. An experimental optimization study on a tube-in-shell latent heat storage. Int J Energy Res. 2007;31(3):274–87.

    Article  Google Scholar 

  41. Aydın AA, Okutan H. High-chain fatty acid esters of myristyl alcohol with even carbon number: novel organic phase change materials for thermal energy storage–1. Sol Energy Mater Sol Cells. 2011;95(10):2752–62.

    Article  Google Scholar 

Download references

Acknowledgements

This work has been financially supported by Ministry of High Education (MOHE) of Malaysia, Grants Number RP021C-13AET, PG066-2014A and UM.C/625/1/HIR/MOHE/ENG/45 supported by University of Malaya, Faculty of Engineering, and the authors are grateful for the grants.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Paria.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Paria, S., Baradaran, S., Amiri, A. et al. Performance evaluation of latent heat energy storage in horizontal shell-and-finned tube for solar application. J Therm Anal Calorim 123, 1371–1381 (2016). https://doi.org/10.1007/s10973-015-5006-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-015-5006-1

Keywords

Navigation