Skip to main content
Log in

TG/DSC study of the thermal behaviour of hazardous mineral fibres

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

This paper reports a systematic and comparative study of the thermal behaviour of fibres of social, health, economic and industrial relevance using thermogravimetric and differential scanning calorimetry (TG/DSC). The mineral fibres selected for the study are: three chrysotile samples, crocidolite, tremolite asbestos, amosite, anthophyllite asbestos and asbestiform erionite. Powder X-ray diffraction and scanning electron microscopy were used for the characterization of the mineral fibres before and after heating at 1000 or 1100 °C to identify the products of the thermal decomposition at a microscopic and structural scale and characterize their thermal behaviour. TG/DSC data allowed the determination of the structural water content and temperature stability. Furthermore, thermal analysis provided a sensitive and reliable technique for the detection of small quantities of different mineral phases occurring as impurities. After thermal treatment, fibrous samples were completely transformed into various iron oxide, cristobalite and other silicate phases which preserved the original overall fibrous morphology (as pseudomorphosis). Only crocidolite at 1100 °C was partially melted, and an amorphous surface was observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Guthrie GD, Mossman BT. Merging the geological and biological science an integrated approach to mineral induced pulmonary disease. In: Guthrie GD, Mossman BT, editors. Health effects of mineral dusts, Vol. 28, Reviews in mineralogy and geochemistry. Chelsea: Mineralogical Soc. America Geochemical Soc; 1993. p. 1–5.

    Google Scholar 

  2. Francine B, Ambrosi JP, Carbone M. Asbestos is not just asbestos: an unrecognised health hazard. Lancet Oncol. 2013;14:576–8.

    Article  Google Scholar 

  3. Whittaker EJW. The structure of chrysotile. V. Diffuse reflections and fibre texture. Acta Crystallogr. 1957;10:149–56.

    Article  CAS  Google Scholar 

  4. Yada K. Study of microstructure of chrysotile asbestos by high-resolution electron microscopy. Acta Crystallogr. 1971;A 27:659–64.

    Article  Google Scholar 

  5. Smith JV, Bennett JM. Enumeration of 4-connected 3-dimensional nets and classification of framework silicates; the infinite set of ABC-6 nets; the Archimedean and sigma-related nets. Am Mineral. 1981;66:777–88.

    CAS  Google Scholar 

  6. Gualtieri G, Artioli E, Passaglia S, Bigi A, Viani JCH. Crystal structure-crystal chemistry relationships in the zeolites erionite and offretite. Am Mineral. 1998;83:590–606.

    Article  CAS  Google Scholar 

  7. Gunter ME, Belluso E, Mottana A. Amphiboles: environmental and health concerns. In: Rosso JJ, editor. Reviews in mineralogy and geochemistry. Chantilly: Mineralogical Society of America Geochemical Society; 2007. p. 453–516.

    Google Scholar 

  8. Kamp DW. Asbestos-induced lung diseases: an update. Transl Res. 2009;153:143–52.

    Article  CAS  Google Scholar 

  9. Bertino P, Marconi A, Palumbo L, Bruni BM, Barbone D, Germano S, Dogan AU, Tassi GF, Porta C, Mutti L, Gaudino G. Erionite and asbestos differently cause transformation of human mesothelial cells. Int J Cancer. 2007;121:12–20.

    Article  CAS  Google Scholar 

  10. Plescia P, Gizzi D, Benedetti S, Camilucci L, Fanizza C, De Simone P, Paglietti F. Mechanochemical treatment to recycling asbestos-containing waste. Waste Manage. 2003;23:209–18.

    Article  CAS  Google Scholar 

  11. Favero-Longo SE, Castelli D, Fubini B, Piervittori R. Lichens on asbestos-cement roofs: bioweathering and biocovering effects. J Hazard Mater. 2009;162:1300–8.

    Article  CAS  Google Scholar 

  12. Anastasiadou K, Axiotis D, Gidarakos E. Hydrothermal conversion of chrysotile asbestos using near supercritical conditions. J Hazard Mater. 2010;179:926–32.

    Article  CAS  Google Scholar 

  13. Leonelli C, Veronesi P, Boccaccini DN, Rivasi MR, Barbieri L, Andreola F, Lancellotti I, Rabitti D, Pellacani GC. Microwave thermal inertisation of asbestos containing waste and its recycling in traditional ceramics. J Hazard Mater. 2006;135:149–55.

    Article  CAS  Google Scholar 

  14. Boccaccini DN, Leonelli C, Rivasi MR, Romagnoli M, Veronesi P, Pellacani GC, Boccaccini AR. Recycling of microwave inertised asbestos containing waste in refractory materials. J Eur Ceram Soc. 2007;27:1855–8.

    Article  CAS  Google Scholar 

  15. Candela PA, Crummett CD, Earnest DJ, Frank MR, Wylie AG. Low-pressure decomposition of chrysotile as a function of time and temperature. Am Mineral. 2007;92:1704–13.

    Article  CAS  Google Scholar 

  16. Gualtieri AF, Cavenati C, Zanatto I, Meloni M, Elmi G, Lassinantti Gualtieri M. The transformation sequence of cement–asbestos slates up to 1200 °C and safe recycling of the reaction product in stoneware tile mixtures. J Hazard Mater. 2008;152:563–70.

    Article  CAS  Google Scholar 

  17. Zaremba T, Peszko M. Investigation of the thermal modification of asbestos wastes for potential use in ceramic formulation. J Therm Anal Calorim. 2008;92:873–7.

    Article  CAS  Google Scholar 

  18. Dellisanti F, Rossi PL, Valdre G. Remediation of asbestos containing materials by Joule heating vitrification performed in a pre-pilot apparatus. Int J Miner Process. 2009;91:61–7.

    Article  CAS  Google Scholar 

  19. Yvon Y, Sharrock P. Characterization of thermochemical inactivation of asbestos containing wastes and recycling the mineral residues in cement products. Waste Biomass Valor. 2011;2:169–81.

    Article  CAS  Google Scholar 

  20. Kusiorowski R, Zaremba T, Piotrowski J, Gerle A. Thermal decomposition of asbestos-containing materials. J Therm Anal Calorim. 2013;113:179–88.

    Article  CAS  Google Scholar 

  21. Cattaneo A, Gualtieri AF, Artioli G. Kinetic study of the dehydroxylation of chrysotile asbestos with temperature by in situ XRPD. Phys Chem Miner. 2003;30:177–83.

    Article  CAS  Google Scholar 

  22. Zaremba T, Krząkała A, Piotrowski J, Garczorz D. Study on the thermal decomposition of chrysotile asbestos. J Therm Anal Calorim. 2010;101:479–85.

    Article  CAS  Google Scholar 

  23. Zulumyan N, Mirgorodski A, Isahakyan A, Beglaryan H. The mechanism of decomposition of serpentines from peridotites on heating. J Therm Anal Calorim. 2014;115:1003–12.

    Article  CAS  Google Scholar 

  24. Hodgson AA, Freeman AG, Taylor HFW. The thermal decomposition of crocidolite from Koegas, South Africa. Mineral Mag. 1965;35:5–30.

    Article  CAS  Google Scholar 

  25. Rouxhet PG, Gillard JL, Fripiat JJ. Thermal decomposition of amosite, crocidolite, and biotite. Mineral Mag. 1972;38:583–92.

    Article  CAS  Google Scholar 

  26. Kohyama N, Shinohama Y, Suzuki Y. Mineral phases and some re-examined characteristics of the international union against cancer standard asbestos samples. Am J Ind Med. 1996;30:515–28.

    Article  CAS  Google Scholar 

  27. Jeyaratnam M, West NG. A study of heat-degraded chrysotile, amosite and crocidolite by X-ray diffraction. Ann Occup Hyg. 1994;38:137–48.

    Article  CAS  Google Scholar 

  28. Gualtieri AF, Levy D, Belluso E, Dapiaggi M. Kinetics of the decomposition of crocidolite asbestos: a preliminary real-time X-ray powder diffraction study. Miner Sci Forum. 2004;443–444:291–4.

    Article  Google Scholar 

  29. Kusiorowski R, Zaremba T, Gerle A, Piotrowski J, Simka W, Adamek J. Study on the thermal decomposition of crocidolite asbestos. J Therm Anal Calorim. 2015;. doi:10.1007/s10973-015-4421-7.

    Google Scholar 

  30. Hodgson AA, Freeman AG, Taylor HFW. The thermal decomposition of amosite. Mineral Mag. 1965;35:445–63.

    Article  CAS  Google Scholar 

  31. Freeman AG. The dehydroxylation behavior of amphibole. Mineral Mag. 1966;35:953–7.

    Article  CAS  Google Scholar 

  32. Kusiorowski R, Zaremba T, Piotrowski J, Adamek J. Thermal decomposition of different types of asbestos. J Therm Anal Calorim. 2012;109:693–704.

    Article  CAS  Google Scholar 

  33. Papke KG. Erionite and associated zeolites in Nevada. Nev Bur Mines Geol Bull. 1972;79:1–31.

    Google Scholar 

  34. Pugnaloni A, Giantomassi F, Lucarini G, Capella S, Bloise A, Di Primio R, Belluso E. Cytotoxicity induced by exposure to natural and synthetic tremolite asbestos: an in vitro pilot study. Acta Histochem. 2013;115:100–12.

    Article  CAS  Google Scholar 

  35. Duncan KE, Cook PM, Gavett SH, Dailey LA, Mahoney RK, Ghio AJ, Roggli VL, Devlin RB. In vitro determinants of asbestos fiber toxicity: effect on the relative toxicity of Libby amphibole in primary human airway epithelial cells. Part Fibre Toxicol. 2014;11:1–14.

    Article  CAS  Google Scholar 

  36. Pollastri S, Gualtieri AF, Lassinantti Gualtieri M, Hanuskova M, Cavallo A, Gaudino G. The zeta potential of mineral fibres. J Hazard Mater. 2014;276:469–79.

    Article  CAS  Google Scholar 

  37. Frost RL, Erickson KL. Thermal decomposition of synthetic hydrotalcites reevesite and pyroaurite. J Therm Anal Calorim. 2004;76:217–25.

    Article  CAS  Google Scholar 

  38. Kissinger HE. Reaction kinetics in differential thermal analysis. Anal Chem. 1957;29:1702–6.

    Article  CAS  Google Scholar 

  39. Gallagher PK, Warne SSTJ. Thermomagnetometry and thermal decomposition of siderite. Thermochim Acta. 1981;43:253–67.

    Article  CAS  Google Scholar 

  40. Viti C. Serpentine minerals discrimination by thermal analysis. Am Mineral. 2010;95:631–8.

    Article  CAS  Google Scholar 

  41. Villieras F, Yvon J, Cases JM, De Donato P, Lhote F, Baeza R. Development of microporosity in clinochlore upon heating. Clay Clay Miner. 1994;42:679–88.

    Article  CAS  Google Scholar 

  42. Catalano M, Belluso E, Miriello D, Barrese E, Bloise A. Synthesis of Zn-doped talc in hydrothermal atmosphere. Cryst Res Technol. 2014;49:283–9.

    Article  CAS  Google Scholar 

  43. Ball MC, Taylor HFW. The dehydration of chrysotile in air and under hydrothermal conditions. Mineral Mag. 1963;33:467–82.

    Article  Google Scholar 

  44. Brindley GW, Hayami R. Mechanism of formation of forsterite and enstatite from serpentine. Mineral Mag. 1965;35:189–95.

    Article  CAS  Google Scholar 

  45. Martin CJ. The thermal decomposition of chrysotile. Mineral Mag. 1977;41:453–9.

    Article  CAS  Google Scholar 

  46. MacKenzie KJD, Meinhold RH. Thermal reactions of chrysotile revisited: a 29 Si and 25 Mg MAS NMR study. Am Mineral. 1994;79:43–50.

    CAS  Google Scholar 

  47. Bloise A, Belluso E, Barrese E, Miriello D, Apollaro C. Synthesis of Fe-doped chrysotile and characterization of the resulting chrysotile fibers. Cryst Res Technol. 2009;44:590–6.

    Article  CAS  Google Scholar 

  48. Bloise A, Belluso E, Fornero E, Rinaudo C, Barrese E, Capella S. Influence of synthesis conditions on growth of Ni-doped chrysotile. Micropor Mesopor Mat. 2010;132:239–45.

    Article  CAS  Google Scholar 

  49. Bloise A, Critelli T, Catalano M, Apollaro C, Miriello D, Croce A, Barrese E, Liberi F, Piluso E, Rinaudo C, Belluso E. Asbestos and other fibrous minerals contained in the serpentinites of the Gimigliano-Mount Reventino Unit (Calabria, S-Italy). Environ Earth Sci. 2014;71:3773–86.

    Article  CAS  Google Scholar 

  50. Kulp JL, Trites AF. Differential thermal analysis of natural hydrous ferric oxides. Am Mineral. 1951;36:23–44.

    CAS  Google Scholar 

  51. Taufiq-Yap YH, Nur-Faizal AR, Sivasangar S, Hussein MZ, Aishah A. Modification of Malaysian dolomite using mechanochemical treatment via different media for oil palm fronds gasification. Int J Energy Res. 2014;38:1008–15.

    Article  CAS  Google Scholar 

  52. Viti C, Giacobbe C, Gualtieri AF. Quantitative determination in massive serpentinites using DTA: implications for asbestos determination. Am Mineral. 2011;96:1003–11.

    Article  CAS  Google Scholar 

  53. Cattaneo A, Somigliana A, Gemmi M, Bernabeo F, Savoca D, Cavallo DM, Bertazzi PA. Airborne concentrations of chrysotile asbestos in serpentine quarries and stone processing facilities in valmalenco, Italy. Ann Occup Hyg. 2012;56:1–13.

    Article  CAS  Google Scholar 

  54. Lesci IG, Balducci G, Pierini F, Soavi F, Roveri N. Surface features and thermal stability of mesoporous Fe doped geoinspired synthetic chrysotile nanotubes. Micropor Mesopor Mat. 2014;197:8–16.

    Article  CAS  Google Scholar 

  55. Lafay R, Montes-Hernandez G, Janots E, Auzende AL, Chiriac R, Lemarchand D, Toche F. Influence of trace elements on the textural properties of synthetic chrysotile: complementary insights from macroscopic and nanoscopic measurements. Micropor Mesopor Mat. 2014;183:81–90.

    Article  CAS  Google Scholar 

  56. Wypych F, Schreiner WH, Mattoso N, Mosca DH, Marangonia R, Bento CAS. Covalent grafting of phenylphosphonate groups onto layered silica derived from in situ-leached chrysotile fibers. J Mater Chem. 2003;13:304–7.

    Article  CAS  Google Scholar 

  57. Giacobbe C, Gualtieri AF, Quartieri S, Rinaudo C, Allegrina M, Andreozzi GB. Spectroscopic study of the product of thermal transformation on chrysotile-asbestos containing materials. Eur J Mineral. 2010;22:535–46.

    Article  CAS  Google Scholar 

  58. Croce A, Allegrina M, Trivero P, Rinaudo C, Viani A, Pollastri S, Gualtieri AF. The concept of ‘end of waste’ and recycling of hazardous materials: in depth characterization of the product of thermal transformation of cement-asbestos. Mineral Mag. 2014;78:1177–91.

    Article  Google Scholar 

  59. Fujishige M, Kuribara A, Karasawa I, Kojima A. Low-temperature pyrolysis of crocidolite and amosite using calcium salts as a flux. J Ceram Soc Jpn. 2007;115:434–9.

    Article  CAS  Google Scholar 

  60. Addison CC, Addison WE, Neal GA, Sftarv JH. Amphiboles Part I: the oxidation of crocidolite. J Chem Soc. 1962;278:1468–71.

    Article  Google Scholar 

  61. Brindley GW, Youell RF. Ferrous chamosite and ferric chamosite. Mineral Mag. 1953;30:57–70.

    Article  CAS  Google Scholar 

  62. Yagi K. The system acmite-diopside and its bearing on the stability relations of natural pyroxenes of the acmite–hedenbergite–diopside series. Am Mineral. 1966;51:976–1000.

    CAS  Google Scholar 

  63. Bowen NL, Schairer JF. The fusion relations of acmite. Am J Sci. 1929;18:365–74.

    Article  CAS  Google Scholar 

  64. MacKenzie RC. The differential thermal investigation of clays. London: Mineralogical Society (Clay Minerals Group); 1957.

    Google Scholar 

  65. Jones AA. Charges on the surfaces of two chlorites. Clay Miner. 1981;16:347–59.

    Article  CAS  Google Scholar 

  66. Luckewicz W. Differential thermal analysis of chrysotile asbestos in pure talc and talc containing other minerals. J Soc Cosmet Chem. 1975;26:431–7.

    CAS  Google Scholar 

  67. Bloise A, Fornero E, Belluso E, Barrese E, Rinaudo C. Synthesis and characterization of tremolite asbestos fibres. Eur J Mineral. 2008;20:1027–33.

    Article  CAS  Google Scholar 

  68. Gualtieri AF, Venturelli P. In situ study of the goethite-hematite phase transformation by real time synchrotron powder diffraction. Am Mineral. 1999;84:895–904.

    Article  CAS  Google Scholar 

  69. Miriello D, Bloise A, De Francesco A, Crisci GM, Chiaravalloti F, Barca D, La Russa MF, Marasco E. Colour and composition of nodules from the Calabrian clay deposits: a possible raw material for pigments production in Magna Graecia. Period Mineral. 2010;79:59–69.

    Google Scholar 

  70. Moore GSM, Rose HE. The structure of powdered quartz. Nature. 1973;242:187–90.

    Article  CAS  Google Scholar 

  71. Brydon JE, Turner RC. The nature of Kenya vermiculite and its aluminum hydroxide complexes. Clay Clay Miner. 1972;20:1–11.

    Article  CAS  Google Scholar 

  72. Bagin VI, Gendler TS, Dainyak LG, Kuz’min RN. Mossbauer, thermomagnetic, and x-ray study of cation ordering and high-temperature decomposition in biotite. Clay Clay Miner. 1980;28:188–96.

    Article  CAS  Google Scholar 

  73. Ballirano P, Cametti G. Dehydration dynamics and thermal stability of erionite-K: experimental evidence of the “internal ionic exchange” mechanism. Micropor Mesopor Mat. 2012;163:160–8.

    Article  CAS  Google Scholar 

  74. Bieniok A, Bornholdt K, Brendel U, Baur WH. Synthesis and crystal structure of zeolite W, resembling the mineral merlinoite. J Mater Chem. 1996;6:271–5.

    Article  Google Scholar 

  75. Skofteland BM, Ellestad OH, Lillerud KP. Potassium merlinoite: crystallization, structural and thermal properties. Micropor Mesopor Mat. 2001;43:61–71.

    Article  CAS  Google Scholar 

  76. Ballirano P, Andreozzi GB, Dogan M, Dogan AU. Crystal structure and iron topochemistry of erionite-K from Rome, Oregon, U.S.A. Am Mineral. 2009;94:1262–70.

    Article  CAS  Google Scholar 

  77. Gottardi G, Galli E. Natural zeolites. Berlin: Springer; 1985.

    Book  Google Scholar 

Download references

Acknowledgements

This research was conducted within the granted Italian National PROGETTO DI UNA UNITÀ DI RICERCA (PRIN) 2010–2011 –prot. 2010MKHT9B 004 “Interazione fra minerali e biosfera: con-seguenze per l’ambiente e la salute umana”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Bloise.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bloise, A., Catalano, M., Barrese, E. et al. TG/DSC study of the thermal behaviour of hazardous mineral fibres. J Therm Anal Calorim 123, 2225–2239 (2016). https://doi.org/10.1007/s10973-015-4939-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-015-4939-8

Keywords

Navigation