Skip to main content
Log in

Phase transition of poly(vinyl alcohol) hydrogel filled with micro-fibrillated cellulose

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Aqueous solution of poly(vinyl alcohol) (PVA) forms hydrogels by freezing and thawing. In this study, micro-fibrillated cellulose (MFC) was mixed with PVA aqueous solution. Thermal properties of PVA–MFC composite hydrogels were investigated in a wide range of water content by differential scanning calorimetry (DSC). On DSC heating curves, glass transition, exothermic peak due to cold crystallization and endothermic peak attributed to melting of water were observed. Phase diagrams of PVA–MFC composite hydrogels were established based on transition temperatures. The amount of non-freezing water increased when MFC is introduced into hydrogels. Glass transition temperature of amorphous ice restrained by PVA–MFC composite hydrogel is restricted by the presence of MFC. Results obtained by DSC suggest that gelation occurs in adjacent PVA molecules due to compartmentalization in the presence of MFC molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Hatakeyama T, Yamauchi A, Hatakeyama H. Studies on bound water in poly(vinyl alcohol) hydrogel by DSC and FT-NMR. Eur Polym J. 1984;20:61–4.

    Article  Google Scholar 

  2. Bhad SN, Sangawar VS. Synthesis and study of PVA based gel electrolyte. Chem Sci Trans. 2012;1:653–7.

    Article  Google Scholar 

  3. Flory PJ. Principles of polymer chemistry, chapter 11. Ithaca, New York: Cornell University Press; 1953.

    Google Scholar 

  4. Peppas NA, Merrill W. Poly(vinyl alcohol) hydrogels: reinforcement of radiation-crosslinked networks by crystallization. J Polym Sci Polym Chem Ed. 1976;14:441–57.

    Article  CAS  Google Scholar 

  5. Peppas NA, Merrill EW. Determination of interaction parameter χ1, for poly(vinyl alcohol) and water in gels crosslinked from solutions. J Polym Sci Polym Chem Ed. 1976;14:459–64.

    Article  CAS  Google Scholar 

  6. Peppas NA, Merrill EW. Crosslinked poly(vinyl alcohol) hydrogels as swollen elastic networks. J Appl Polym Sci. 1977;21:1763–70.

    Article  CAS  Google Scholar 

  7. Hyon S-H, Cha W-I, Ikada Y. Preparation of poly(vinyl alcohol) hydrogels by low temperature crystallization of the aqueous poly(vinyl alcohol) solution. Kobunshi Ronbunshu. 1989;46:673–80.

    Article  CAS  Google Scholar 

  8. Nagura M, Hamano T, Ishikawa H. Structure of PVA hydrogel prepared by repeated freezing and melting. Polymer. 1989;30:762–5.

    Article  CAS  Google Scholar 

  9. Lozinskii VI, Domotenko LV, Vainerman YES, Rogozhin SV. Some thermomechanical properties of polyvinyl alcohol cryogels. Polym Sci USSR. 1989;31:1983–8.

    Article  Google Scholar 

  10. Mori Y, Tokura H, Yoshikawa M. Properties of hydrogels synthesized by freezing and thawing aqueous polyvinyl alcohol solutions and their application. J Mater Sci. 1997;63:491–6.

    Article  Google Scholar 

  11. Hassan CM, Peppas NA. Structure and applications of PVA hydrogels produced by conventional crosslinking or by freezing/thawing methods (in Biopolymers PVA hydrogels, anionic polymerisation nanocomposites). Adv Polym Sci. 2000;153:37–65.

    Article  CAS  Google Scholar 

  12. Hassan CM, Peppas NA. Structure and morphology of freeze/thawed PVA hydrogels. Macromolecules. 2000;33:2472–9.

    Article  CAS  Google Scholar 

  13. Mori Y, Tokura H, Yoshikawa M. Properties of hydrogels synthesized by freezing and thawing aqueous polyvinyl alcohol solutions and their applications. J Mater Sci. 1997;32:491–6.

    Article  CAS  Google Scholar 

  14. Holloway JL, Lowman AM, Palmese GR. The role of crystallization and phase separation in the formation of physically cross-linked PVA hydrogels. Soft Matter. 2013;9:826–33.

    Article  CAS  Google Scholar 

  15. Ricciardi R, Auriemma F, De Rosa C. Structure and properties of poly(vinyl alcohol) hydrogels obtained by freeze/thaw techniques. Macromol Symp. 2005;222:49–63.

    Article  CAS  Google Scholar 

  16. Hatakeyema T, Uno J, Yamada C, Kishi A, Hatakeyama H. Gel–sol transition of poly(vinyl alcohol) hydrogels formed by freezing and thawing. Thermochim Acta. 2005;431:144–8.

    Article  CAS  Google Scholar 

  17. Jiang S, Liu S, Feng W. PVA hydrogel properties for biomedical application. J Mech Behav Biomed Mater. 2011;4:1228–33.

    Article  CAS  Google Scholar 

  18. Liu D, Ma Z, Wang Z, Tian H, Gu M. Biodegradable poly(vinyl alcohol) foams supported by cellulose nanofibrils: processing, structure, and properties. Langmuir. 2014;30:9544–50.

    Article  CAS  Google Scholar 

  19. Iijima M, Hatakeyama T, Hatakeyama H. DSC and TMA studies on freezing and thawing gelation of galactomannan polysaccharide. Thermochim Acta. 2012;532:93–7.

    Article  Google Scholar 

  20. Beltman H, Lyklema J. Rheological monitoring of the formation of PVA–congo red gels. Faraday Discuss Chem Soc. 1974;57:92–100.

    Article  CAS  Google Scholar 

  21. Shibayama M, Ikkai F, Momura S. Complexation of PVA–Congo red aqueous solution 2. SANS and SAXS studies on sol–gel transition. Macromolecules. 1994;27:6383–8.

    Article  CAS  Google Scholar 

  22. Hatakeyama T, Naoi S, Iijima M, Hatakeyama H. Locust bean gum hydrogels formed by freezing and thawing. Macromol Symp. 2005;224:251–62.

    Google Scholar 

  23. Tanaka R, Hatakeyama T, Hatakeyama H. Formation of locust bean gum hydrogel by freezing–thawing. Polym Int. 1998;45:118–26.

    Article  CAS  Google Scholar 

  24. Iijima M, Hatakeyama T, Hatakeyama H. Gelation of cassia gum by freezing and thawing. J Therm Anal Calorim. 2013;113:1073–8.

    Article  CAS  Google Scholar 

  25. Siro I, Plackett D. Microfibrillated cellulose and new nanocomposite materials: a review. Cellulose. 2010;17:459–94.

    Article  CAS  Google Scholar 

  26. Winkworth-Smith C, Foster TJ. General overview of biopolymers: structure, properties, and applications. In: Thomas S, Durand D, Chassenieux C, Jyotishkumar P, editors. Handbook of biopolymer-based materials from blends and composites to gels and complex networks. Boschstr: Wiley-VCH; 2013. p. 7–36.

    Chapter  Google Scholar 

  27. Stokke DD, Wu Q, Han G. Introduction to wood and natural fiber composites. Chichester: Wiley; 2014.

    Google Scholar 

  28. Pérez S, Mazeau K. Conformations, structures, and morphologies of celluloses. In: Dumitriu S, editor. Polysaccharides structural diversity and functional versatility. 2nd ed. New York: Marcel Dekker; 1998. p. 41–68.

    Google Scholar 

  29. Iwamoto S, Nakagaito AN, Yano H, Nogi M. Optically transparent composites reinforced with plant fiber-based nanofibers. Appl Phys. 2005;A81:1109–12.

    Article  Google Scholar 

  30. Nakagaito AN, Iwamoto S, Yano H. Bacterial cellulose: the ultimate nano-scalar cellulose morphology for the production of high-strength composites. Appl Phys. 2005;A80:93–7.

    Article  Google Scholar 

  31. Nakagaito AN, Yano H. Novel high-strength biocomposites based on microfibrillated cellulose having nano-order-unit weblike network structure. Appl Phys. 2005;A80:155–9.

    Article  Google Scholar 

  32. Jimena SG, Leandro NL, Alejandra P, Alvarez VA. Poly(vinyl alcohol)/cellulose nanowhiskers nanocomposite hydrogels for potential wound dressings. Mater Sci Eng. 2014;C 34:54–61.

    Google Scholar 

  33. Hatakeyama H, Hatakeyama T. Interaction between water and hydrophilic polymers. Thermochim Acta. 1998;308:3–22.

    Article  CAS  Google Scholar 

  34. Hatakeyama T, Tanaka M, Hatakeyama H. Thermal properties of freezing bound water restrained by polysaccharides. J Biomater Sci. 2010;21:1865–75.

    Article  CAS  Google Scholar 

  35. Hatakeyama T, Inui Y, Iijima M, Hatakeyama H. Bound water restrained by nanocellulose fibres. J Therm Anal Calorim. 2013;113:1019–25.

    Article  CAS  Google Scholar 

  36. Hatakeyama T, Quinn FX. Thermal analysis fundamentals and applications to polymer science. 2nd ed. Chichester: Wiley; 1999.

    Google Scholar 

  37. Hatakeyama T, Hatakeyama H. Thermal properties of green polymers and biocomposites. Netherlands: Kluwer Academic; 2004.

    Google Scholar 

  38. Hatakeyama T, Iijima M, Hatakeyama H. Role of bound water on structural change of water insoluble polysaccharides. Food Hydrocoll. 2015. doi: 10.1016/j.foodhyd.2014.12.033.

  39. Yoshida H, Hatakeyama T, Hatakeyama H. Effect of water on the main chain motion of polysaccharide hydrogels. In: Glasser WG, Hatakeyama H, editors. Viscoelasticity of biomaterials. ACS symposium series, vol. 489. Washington, DC: ACS; 1992. p. 218–30.

    Google Scholar 

  40. Hatakeyama T, Tanaka M, Kishi A, Hatakeyama H. Comparison of measurement techniques for identification of bound water restrained by polymers. Thermochim Acta. 2012;532:159–63.

    Article  CAS  Google Scholar 

  41. Kishi A, Tanaka M, Mochizuki A. Comparative study on water structures in polyHEMA and polyMEA by XRD–DSC simultaneous measurement. J Appl Polym Sci. 2009;111:476–81.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Professor Clive S. Langham, Nihon University, for his helpful advice. This work was supported by a Grant-in-Aid for Scientific Research [Young Scientists (B)].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mika Iijima.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Iijima, M., Kosaka, S., Hatakeyama, T. et al. Phase transition of poly(vinyl alcohol) hydrogel filled with micro-fibrillated cellulose. J Therm Anal Calorim 123, 1809–1815 (2016). https://doi.org/10.1007/s10973-015-4725-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-015-4725-7

Keywords

Navigation