Skip to main content
Log in

Adsorption microcalorimetry

Characterisation of activated carbons and their application in the study of NOx retention

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

This paper shows the results of the adsorption and reaction of NO on porous solid samples prepared from waste orange peel. Activated carbons prepared from activation with CO2 were impregnated with Ce, Pt, Ni and Fe. These samples were analysed by isotherms of N2 at −196 °C and isotherms of CO2 at 0 °C. The Ce–Pt-activated carbon from orange peel catalysts are the catalysts with the highest reactivity towards NO. Additionally, the differential heats of adsorption were determined. The results show that the NO adsorption capacity of the metal is a function of the amount of metal impregnated and the textural properties. Adsorption microcalorimetry proved to be a very suitable technique for tracking the reaction of NO on catalysts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Chmielarz L, Kustrowski P, Dziembaj R, Cool P, Vansant EF. Catalytic performance of various mesoporous silicas modified with copper or iron oxides introduced by different ways in the selective reduction of NO by ammonia. Appl Catal B: Environ. 2006;62(3–4):369–80.

    Article  CAS  Google Scholar 

  2. Calleja G, Aguado J, Carrero A, Moreno J. Preparation, characterization and testing of Cr/AlSBA-15 ethylene polymerization catalysts. Appl Catal A: Gen. 2007;316(1):22–31.

    Article  CAS  Google Scholar 

  3. Boutros M, Trichard JM, Costa PD. Silver-supported mesoporous SBA-15 as potential catalysts for SCR NO x by ethanol. Appl Catal B: Environ. 2009;91(3–4):640–8.

    Article  CAS  Google Scholar 

  4. Brandenberger S, Krocher O, Tissler A, Althoff R. The state of the art in selective catalytic reduction of NO x by ammonia using metal-exchanged zeolite catalysts. Catal Rev. 2008;50(4):492–531.

    Article  CAS  Google Scholar 

  5. Brandhorst M, Zajac J, Jones DJ, Roziere J, Womes M, Jimenez- López A. Cobalt-, copper- and iron-containing monolithic aluminosilicate-supported preparations for selective catalytic reduction of NO with NH3 at low temperatures. Appl Catal B: Environ. 2005;55(4):267–76.

    Article  CAS  Google Scholar 

  6. Corma A. From microporous to mesoporous molecular sieve materials and their use in catalysis. Chem Rev. 1997;97(6):2373–420.

    Article  CAS  Google Scholar 

  7. Wang YL, Huang ZG, Liu Z, Qingya L. A novel activated carbon honeycomb catalyst for simultaneous SO2 and NO removal at low temperatures. Carbon. 2004;42:445–8.

    Article  CAS  Google Scholar 

  8. Pasel J, Kabner P, Montanari B, Gazzano M, Vaccari A, Makowski W, Lojewski T, Dziembaj R, Papp H. Transition metal oxides supported on active carbons as low temperature catalysts for the selective catalytic reduction (SCR) of NO with NH3. Appl Catal B: Environ. 1998;18:199–213.

    Article  CAS  Google Scholar 

  9. Zhu Z, Liu Z, Niu H, Liu S, Hu T, Liu T, Xie Y. Mechanism of SO2 promotion for NO reduction with NH3 over activated carbon-supported vanadium oxide catalyst. J Catal. 2001;197:6–16.

    Article  CAS  Google Scholar 

  10. Ma J, Liu Z, Liu Q, Guo S, Huang Z, Xiao Y. SO2 and NO removal from flue gas over V2O5/AC at lower temperatures—role of V2O5 on SO2 removal. Fuel Process Technol. 2008;89(3):242–8.

    Article  CAS  Google Scholar 

  11. Yanli W, Zhanggen H, Zhengyu L, Qingya L. A novel activated carbon honeycomb catalyst for simultaneous SO2 and NO removal at low temperatures. Carbon. 2004;42:423–60.

    Article  Google Scholar 

  12. Yanli W, Zhenyu L, Liang Z, Zhanggen H, Qingya L, Jianrong M. Performance of an activated carbon honeycomb supported V2O5 catalyst in simultaneous SO2 and NO removal. Chem Eng Sci. 2004;59:5238–90.

    Google Scholar 

  13. Tseng HH, Wey MY, Liang YS, Chen KH. Catalytic removal of SO2, NO and HCl from incineration flue gas over activated carbon-supported metal oxides. Carbon. 2003;41:1079–85.

    Article  CAS  Google Scholar 

  14. Wang Y, Liu Z, Zhan L, Huang Z, Liu Q, Ma J. Performance of an activated carbon honeycomb supported V2O5 catalyst in simultaneous SO2 and NO removal. Chem Eng Sci. 2004;59:5283–90.

    Article  CAS  Google Scholar 

  15. Namasivayam C, Muniasamy N, Gayathri K, Rani M, Ranganathan K. Removal of dyes from aqueous solutions by cellulosic waste orange peel. Bioresour Technol. 1996;57:37–43.

    Article  Google Scholar 

  16. Sivaraj R, Namasivayam C, Kadirvelu K. Orange peel as an adsorbent in the removal of acid violet 17 (acid dye) from aqueous solutions. Waste Manage. 2001;21:105–10.

    Article  CAS  Google Scholar 

  17. Giraldo L, Moreno-Piraján JC. Activated carbon prepared from orange peels coated with titanium oxide nanoparticles: characterization and applications in the decomposition of NO x . Orient J Chem. 2014;30(2):451–61.

    Article  CAS  Google Scholar 

  18. Dumesic JA, Cardona-Martinez N. Applications of adsorption microcalorimetry to the study of heterogeneous catalysis. Adv Catal. 1992;38:149–57.

    Google Scholar 

  19. Wunder RW, Phillips J. Structure of bimetallic particles: nonequimolar graphite-supported Fe–Pd. J Phys Chem. 1996;100:14430–6.

    Article  CAS  Google Scholar 

  20. Phillips J, Xia B, Angel-Menéndez J. Calorimetric study of oxygen adsorption on activated carbón. Thermochim Acta. 1998;312(1–2):87–93.

    Article  CAS  Google Scholar 

  21. Gatte RR, Phillips J. Microcalorimetric study of the progressive oxidation of the surface of graphite-supported iron microcrystals. Langmuir. 1989;5:758–66.

    Article  CAS  Google Scholar 

  22. Gow AS, Phillips J. Microcalorimetric study of reactive surface area on demineralized coal chars. Energy Fuels. 1993;7:674–9.

    Article  CAS  Google Scholar 

  23. O’Neil M, Lovrien R, Phillips J. New microcalorimeter for the measurement of differential heats of adsorption of gases on high surface area solids. Rev Sci Instrum. 1985;56:2312–24.

    Article  Google Scholar 

  24. Gravelle PC. Heat-flow microcalorimetry and its application to heterogeneous catalysis. Adv Catal. 1972;22:191–263.

    CAS  Google Scholar 

  25. Sumathi S. Removal of SO2 and NO from simulated flue gas using palm shell activated carbon. Ph.D. Thesis, Universiti Sains Malaysia, Malaysia, 2010.

  26. Marsh H, Rodríguez-Reinoso F. Characterization of activated carbon. In: Marsh H, Reinoso F, editors. Activated carbon. Elsevier Science Ltd. United Kingdom. 2005; pp. 157–164.

  27. Moreno-Piraján JC, García-Cuello VS, Giraldo L. Characterization of mordenite-supported Pd, Pt, and Ir determined by CO adsorption microcalorimetry and the dehydrogenation reaction of C3 alkanes. Top Catal. 2011;54:146–52.

    Article  Google Scholar 

  28. Colthup NB, Daly LH, Wiberley SE. Introduction to infrared and Raman spectroscopy. 3rd ed. San Diego: Academic Press; 1990.

    Google Scholar 

  29. Jensen H, Pedersen JH, Jorgensen JE, Pedersen JS, Joensen KD, Iversen SB, et al. Determination of size distributions in nanosized powders by TEM, XRD, and SAXS. J Exp Nanoscience. 2006;1:355–73.

    Article  CAS  Google Scholar 

  30. Spirewak BE, Dumesic JA. Applications of adsorption microcalorimetry for the characterization of metal-based catalyst. Thermochim Acta. 1998;312:95–104.

    Article  Google Scholar 

  31. Sousa JPS, Pereira MFR, Figueiredo JL. Carbon xerogel catalyst for NO oxidation. Catalysts. 2012;2:447–65.

    Article  CAS  Google Scholar 

  32. Yi H, Deng H, Tang X, Yu Q, Zhou X, Liu H. Adsorption equilibrium and kinetics for SO2, NO, CO2 on zeolites FAU and LTA. J Hazard Mater. 2012;203–204:111–7.

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Universidad de los Andes (Bogotá, Colombia) and the Universidad Nacional de Colombia (Sede Bogotá), according to the framework agreement between the two institutions under which this research was developed. Special thanks go to the Facultad de Ciencias and the Vice-Rectoría de Investigaciones at the Universidad de los Andes (Bogotá, Colombia) for funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan Carlos Moreno-Piraján.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Giraldo, L., Moreno-Piraján, J.C. Adsorption microcalorimetry. J Therm Anal Calorim 121, 245–255 (2015). https://doi.org/10.1007/s10973-015-4684-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-015-4684-z

Keywords

Navigation