Skip to main content
Log in

Vacuum thermal decomposition of polyethylene containing antioxidant and hydrophilic/hydrophobic silica

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Temperature-programmed desorption mass spectrometry has been used to study vacuum thermolysis of high-density polyethylene (HDPE) and its composites with hydrophilic or hydrophobic nanosilica in the presence or absence of butylated hydroxytoluene (BHT). It has been found that both surface chemistry of silica filler and the presence of immobilized BHT affect the pathway of HDPE thermal decomposition. Volatility of BHT antioxidant was shown to decrease in the following sequence: free BHT > HDPE–BHT > HDPE–hydrophobic silica/BHT > HDPE–hydrophilic silica/BHT, and the capability of the additives to inhibit chain scission reaction during thermal decomposition of HDPE in vacuum was as follows: hydrophobic silica/BHT > BHT > hydrophobic silica > hydrophilic silica/BHT > hydrophilic silica ≈ no additives.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Till DE, Ehntholt DJ, Reid RC, Schwartz PS, Sidman KR, Schwope AD, Whelan RH. Migration of BHT antioxidant from high density polyethylene to foods and food simulants. Ind Eng Chem Prod Res Dev. 1982;21:106–13.

    Article  CAS  Google Scholar 

  2. Widomski M, Kowalska B, Kowalski D, Kwietniewski M, Czerwinski J. Modelling the concentration of antioxidant BHT migrating from polyethylene pipe to water. In: Mambretti S, Brebbia CA, editors. Urban water. Southampton: WIT Press; 2012. p. 49–60.

    Google Scholar 

  3. Tombesi NB, Freije H. Application of solid-phase microextraction combined with gas chromatography-mass spectrometry to the determination of butylated hydroxytoluene in bottled drinking water. J Chromat A. 2002;963:179–83.

    Article  CAS  Google Scholar 

  4. Wessling C, Nielsen T, Leufven A, Jagerstad M. Mobility of alpha-tocopherol and BHT in LDPE in contact with fatty food simulants. Food Addit Contam. 1998;15:709–15.

    Article  CAS  Google Scholar 

  5. Lee YS, Shin HS, Han JK, Lee M, Giacin JR. Effectiveness of antioxidant-impregnated film in retarding lipid oxidation. J Sci Food Agr. 2004;84:993–1000.

    Article  CAS  Google Scholar 

  6. Munteanu D, Mracec M, Tincul I, Csunderlik C. Monomeric antioxidants. An 1H-NMR spectrometry study of their homopolymerization. Polym Bull. 1985;13:77–82.

    Article  CAS  Google Scholar 

  7. Kim TH, Song Y, Kim JN. Synthesis and properties of new polymer having hindered phenol antioxidants. Bull Korean Chem Soc. 2003;24:1853–5.

    Article  CAS  Google Scholar 

  8. Lipatov YS. Polymer Reinforcement. Toronto: ChemTech Publishing; 1995.

    Google Scholar 

  9. Dorigato A, Pegoretti A, Frache A. Thermal stability of high density polyethylene–fumed silica nanocomposites. J Therm Anal Calorim. 2012;109:863–73.

    Article  CAS  Google Scholar 

  10. Bolbukh Yu, Kuzema P, Tertykh V, Laguta I. Thermal degradation of polyethylene containing antioxidant and hydrophilic/hydrophobic silica. J Therm Anal Calorim. 2008;94:727–36.

    Article  CAS  Google Scholar 

  11. Pokrovskiy VA. Temperature-programmed desorption mass-spectrometry. J Therm Anal Calorim. 2000;62:407–15.

    Article  CAS  Google Scholar 

  12. Madorsky SL. Thermal degradation of organic polymers. New York: Interscience Publishers; 1964.

    Google Scholar 

  13. Peterson JD, Vyazovkin S, Wight CA. Kinetics of the thermal and thermo-oxidative degradation of polystyrene, polyethylene and poly(propylene). Macromol Chem Phys. 2001;202:775–84.

    Article  CAS  Google Scholar 

  14. Grassie N, Scott G. Polymer degradation and stabilization. Cambridge: Cambridge University Press; 1985.

    Google Scholar 

  15. Gugumus F. Thermolysis of polyethylene hydroperoxides in the melt: 1. Experimental kinetics of hydroperoxide decomposition. Polym Degrad Stab. 2000;69:23–34.

    Article  CAS  Google Scholar 

  16. Gugumus F. Re-examination of the thermal oxidation reactions of polymers. 2. Thermal oxidation of polyethylene. Polym Degrad Stab. 2002;76:329–40.

    Article  CAS  Google Scholar 

  17. Ranzi E, Dente M, Faravelli T, Bozzano G, Fabini S, Nava R, Cozzani V, Tognotti L. Kinetic modeling of polyethylene and polypropylene thermal degradation. J Anal Appl Pyrolysis. 1997;40–41:305–19.

    Article  Google Scholar 

  18. Chrissafis K, Paraskevopoulos KM, Pavlidou E, Bikiaris D. Thermal degradation mechanism of HDPE nanocomposites containing fumed silica nanoparticles. Thermochim Acta. 2009;485:65–71.

    Article  CAS  Google Scholar 

  19. Hinsken H, Moss S, Pauquet J-R, Zweifel H. Degradation of polyolefins during melt processing. Polym Degrad Stab. 1991;34:279–93.

    Article  CAS  Google Scholar 

  20. Choi M-K, Kim E-J, Bu SY, Sung MK, Jo C-W, Kang M. Analysis of antioxidant activity of silicon in vitro and murine macrophages. FASEB J. 2013;27(859):1.

    Google Scholar 

  21. Liauw CM, Childs A, Allen NS, Edge M, Franklin KR, Collopy DG. Effect of interactions between stabilisers and silica used for antiblocking applications on UV and thermal stability of polyolefin film. 1. Adsorption studies. Polym Degrad Stab. 1999;63:391–7.

    Article  CAS  Google Scholar 

  22. Luo Y-P. Comprehensive handbook of chemical bond energies. Boca Raton: CRC Press; 2007.

    Book  Google Scholar 

  23. Mass spectrum (electron ionization) of butylated hydroxytoluene. In: NIST mass spectrometry data center. 2010. http://webbook.nist.gov/cgi/cbook.cgi?Name=bht&Units=SI&cMS=on. Accessed 10 Oct 2014.

Download references

Acknowledgements

The research leading to these results has received funding from the People Programme (Marie Curie Actions) of the European Union’s Seventh Framework Programme FP7/2007–2013/under REA grant agreement No PIRSES-GA-2013-612484.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. O. Kuzema.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuzema, P.O., Bolbukh, Y.M., Tertykh, V.A. et al. Vacuum thermal decomposition of polyethylene containing antioxidant and hydrophilic/hydrophobic silica. J Therm Anal Calorim 121, 1167–1180 (2015). https://doi.org/10.1007/s10973-015-4646-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-015-4646-5

Keywords

Navigation