Skip to main content
Log in

Thermogravimetric analysis of kinetic characteristics of K2CO3-impregnated mesoporous silicas in low-concentration CO2

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The requirement for self-sustained and long-duration human operations in confined spaces including submarines, spacecrafts, or underground citadels has made ambient removal of low-concentration CO2 a critical technology. Mesoporous silica materials have been regarded as promising carriers to support active components for CO2 sorption. The CO2 sorption kinetic of mesoporous silica-supported adsorbent is an important parameter to be assessed. In this paper, K2CO3-impregnated mesoporous silicas were prepared by impregnating K2CO3 on MCM-41, SBA-15, and silica gel (SG) in ethanol solution, respectively. The CO2 sorption experiments were performed in a simulated confined space atmosphere of 1.0 % CO2, 2.0 % H2O, and 293–333 K using thermogravimetric analysis. The kinetic performances of the sorbents were evaluated by fitting the experimental data to the shrinking core model. K2CO3/SG exhibited the optimum carbonation kinetic performance. The apparent activation energies for chemical reaction-controlled region and internal diffusion-controlled region are 3.95 and 64.87 kJ mol−1, respectively. To obtain the specific carbonation kinetic mechanism, a double exponential model was used to simulate the carbonation process of K2CO3/SG. The apparent activation energies for H2O diffusion–hydration and CO2 diffusion–carbonation stages are 8.40 and 4.32 kJ mol−1, respectively. H2O diffusion–hydration is the rate limiting step in the whole carbonation process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Wang Q, Luo JZ, Zhong ZY, Borgna A. CO2 capture by solid adsorbents and their applications: current status and new trends. Energy Environ Sci. 2011;4:42–55.

    Article  CAS  Google Scholar 

  2. Wang JY, Huang L, Yang RY, Zhang Z, Wu JW, Gao YS, Wang Q, O’Hare D, Zhong ZY. Recent advances in solid sorbents for CO2 capture and new development trends. Energy Environ Sci. 2014;. doi:10.1039/C4EE01647E.

    Google Scholar 

  3. Samanta A, Zhao A, Shimizu GKH, Sarkar P, Gupta R. Post-combustion CO2 capture using solid sorbents: a review. Ind Eng Chem Res. 2011;51:1438–63.

    Article  Google Scholar 

  4. D’Alessandro DM, Smit B, Long JR. Carbon dioxide capture: prospects for new materials. Angew Chem Int Ed. 2010;49:6058–82.

    Article  Google Scholar 

  5. Choi S, Drese JH, Jones CW. Adsorbent materials for carbon dioxide capture from large anthropogenic point sources. ChemSusChem. 2009;2:796–854.

    Article  CAS  Google Scholar 

  6. Rouchon L, Favergeon L, Pijolat M. Analysis of the kinetic slowing down during carbonation of CaO by CO2. J Therm Anal Calorim. 2013;113:1145–55.

    Article  CAS  Google Scholar 

  7. Rouchon L, Favergeon L, Pijolat M. New kinetic model for the rapid step of calcium oxide carbonation by carbon dioxide. J Therm Anal Calorim. 2014;116:1181–8.

    Article  CAS  Google Scholar 

  8. Li YJ, Liu HL, Sun RY, Wu SM, Lu CM. Thermal analysis of cyclic carbonation behavior of CaO derived from carbide slag at high temperature. J Therm Anal Calorim. 2012;110:685–94.

    Article  CAS  Google Scholar 

  9. Li YJ, Zhao CS, Chen HC, Duan LB, Chen XP. CO2 capture behavior of shell during calcination/carbonation cycles. Chem Eng Technol. 2009;32:1176–82.

    Article  CAS  Google Scholar 

  10. Li YJ, Wang WJ, Xie X, Sun RY, Wu SM. SO2 retention by highly cycled modified CaO-based sorbent in calcium looping process. J Therm Anal Calorim. 2014;116(2):955–62.

    Article  CAS  Google Scholar 

  11. Li YJ, Liu HL, Wu SM, Sun RY, Lu CM. Sulfation behavior of CaO from long-term carbonation/calcination cycles for CO2 capture at FBC temperatures. J Therm Anal Calorim. 2013;111(2):1335–43.

    Article  CAS  Google Scholar 

  12. Wang SP, Yan SL, Ma XB, Gong JL. Recent advances in capture of carbon dioxide using alkali-metal-based oxides. Energy Environ Sci. 2011;4:3805–19.

    Article  CAS  Google Scholar 

  13. Zhao CW, Chen XP, Anthony EJ, Jiang X, Duan LB, Wu Y, Dong W, Zhao CS. Capturing CO2 in flue gas from fossil fuel-fired power plants using dry regenerable alkali metal-based sorbent. Prog Energy Combust. 2013;39:515–34.

    Article  Google Scholar 

  14. Hayashi H, Taniuchi J, Furuyashiki N, Sugiyama S, Hirano S, Shigemoto N, Nonaka T. Efficient recovery of carbon dioxide from flue gases of coal-fired power plants by cyclic fixed-bed operations over K2CO3-on-carbon. Ind Eng Chem Res. 1998;37:185–91.

    Article  CAS  Google Scholar 

  15. Zhao CW, Chen XP, Zhao CS, Liu YK. Carbonation and hydration characteristics of dry potassium-based sorbents for CO2 capture. Energy Fuels. 2009;23:1766–9.

    Article  CAS  Google Scholar 

  16. Zhao CW, Chen XP, Zhao CS. Effect of crystal structure on CO2 capture characteristics of dry potassium-based sorbents. Chemosphere. 2009;75:1401–4.

    Article  CAS  Google Scholar 

  17. Lee DK, Min DY, Seo H, Kang NY, Choi WC, Park YK. Kinetic expression for the carbonation reaction of K2CO3/ZrO2 sorbent for CO2 capture. Ind Eng Chem Res. 2013;52:9323–9.

    Article  CAS  Google Scholar 

  18. Zhao CW, Chen XP, Zhao CS. Carbonation behavior and the reaction kinetic of a new dry potassium-based sorbent for CO2 capture. Ind Eng Chem Res. 2012;51:14361–6.

    Article  CAS  Google Scholar 

  19. Chaikittisilp W, Khunsupat R, Chen TT, Jones CW. Poly (allylamine)–mesoporous silica composite materials for CO2 capture from simulated flue gas or ambient air. Ind Eng Chem Res. 2011;50:14203–10.

    Article  CAS  Google Scholar 

  20. Liu SH, Wu CH, Lee HK, Liu SB. Highly stable amine-modified mesoporous silica materials for efficient CO2 capture. Top Catal. 2010;53:210–7.

    Article  CAS  Google Scholar 

  21. Son WJ, Choi JS, Ahn WS. Adsorptive removal of carbon dioxide using polyethyleneimine-loaded mesoporous silica materials. Microporous Mesoporous Mat. 2008;13:31–40.

    Article  Google Scholar 

  22. Zhao HL, Hu J, Wang JJ, Zhou LH, Liu LH. CO2 Capture by the amine-modified mesoporous materials. Acta Phys-Chim Sin. 2007;23:801–6.

    Article  CAS  Google Scholar 

  23. Mello MR, Phanon D, Silveira GQ, Llewellyn PL, Ronconi CM. Amine-modified MCM-41 mesoporous silica for carbon dioxide capture. Microporous Mesoporous Mat. 2011;143:174–9.

    Article  CAS  Google Scholar 

  24. Klinthong W, Chao KJ, Tan CS. CO2 Capture by as-synthesized amine-functionalized MCM-41 prepared through direct synthesis under basic condition. Ind Eng Chem Res. 2013;52:9834–42.

    Article  CAS  Google Scholar 

  25. Barbosa MN, Araujo AS, Galvão LP, Silva EF, Santos AG, Luz GE Jr, Fernandes VJ Jr. Carbon dioxide adsorption over DIPA functionalized MCM-41 and SBA-15 molecular sieves. J Therm Anal Calorim. 2011;106:779–82.

    Article  CAS  Google Scholar 

  26. Stuckert NR, Yang RT. CO2 capture from the atmosphere and simultaneous concentration using zeolites and amine-grafted SBA-15. Environ Sci Technol. 2011;45:10257–64.

    Article  CAS  Google Scholar 

  27. Wang XP, Yu JJ, Cheng J, Hao ZP, Xu ZP. High-temperature adsorption of carbon dioxide on mixed oxides derived from hydrotalcite-like compounds. Environ Sci Technol. 2007;42:614–8.

    Article  Google Scholar 

  28. Gregg SJ, Sing KSW. Adsorption, surface area, and porosity. 2nd ed. London: Academic Press; 1995.

  29. Yin XS, Song M, Zhang QH, Yu JG. High-temperature CO2 capture on Li6Zr2O7: experimental and modeling studies. Ind Eng Chem Res. 2010;49:6593–8.

    Article  CAS  Google Scholar 

  30. Venegas MJ, Fregoso-Israel E, Escamilla R, Pfeiffer H. Kinetic and reaction mechanism of CO2 sorption on Li4SiO4: study of the particle size effect. Ind Eng Chem Res. 2007;46:2407–12.

    Article  CAS  Google Scholar 

  31. Ávalos-Rendón T, Casa-Madrid J, Pfeiffer H. Thermochemical capture of carbon dioxide on lithium aluminates (LiAlO2 and Li5AlO4): a new option for the CO2 absorption. J Phys Chem A. 2009;113:6919–23.

    Article  Google Scholar 

  32. Alcérreca-Corte I, Fregoso-Israel E, Pfeiffer H. CO2 absorption on Na2ZrO3: a kinetic analysis of the chemisorption and diffusion processes. J Phys Chem C. 2008;112:6520–5.

    Article  Google Scholar 

  33. Rodríguez-Mosqueda R, Pfeiffer H. Thermokinetic analysis of the CO2 Chemisorption on Li4SiO4 by using different gas flow rates and particle sizes. J Phys Chem A. 2010;114:4535–41.

    Article  Google Scholar 

  34. Zhao CW, Guo YF, Li CH, Lu SX. Carbonation behavior of K2CO3/AC in low reaction temperature and CO2 concentration. Chem Eng J. 2014;254:524–30.

    Article  CAS  Google Scholar 

  35. Ebune GE. Carbon dioxide capture from power plant flue gas using regenerable activated carbon powder impregnated with potassium carbonate. Youngstown State University, 2008.

Download references

Acknowledgements

Financial support from the National Natural Science Foundation of China (No. 51206155), the Science Foundation of Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, and the Fundamental Research Funds for the Central Universities of China (WK2320000023) is sincerely acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chuanwen Zhao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, Y., Zhao, C. & Li, C. Thermogravimetric analysis of kinetic characteristics of K2CO3-impregnated mesoporous silicas in low-concentration CO2 . J Therm Anal Calorim 121, 1393–1402 (2015). https://doi.org/10.1007/s10973-015-4537-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-015-4537-9

Keywords

Navigation