Skip to main content
Log in

Cobalt addition effects on martensitic transformation and microstructural properties of high-temperature Cu–Al–Fe shape-memory alloys

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The effects of the addition of Co on the martensitic transformation and microstructural properties of high-temperature Cu–Al–Fe shape-memory alloy systems were studied by means of DSC, XRD, optical microscopy and Vickers microhardness measurements. DSC analyses indicated that the Cu–Al–Fe alloy displayed high-temperature shape-memory characteristics and that the Co additions dramatically influenced the martensitic transformation of the alloys. Structural and morphological investigations showed that the alloys had 18R martensite structure and contained different precipitates. With increasing amounts of Co, it was seen that elemental compositions of precipitates changed and their volume fractions increased and, therefore, both thermal stability and microhardness values of the alloys were affected. As a result, whereas microhardness values of the alloys were increased by 313 ± 7.76 to 365.75 ± 7.84 Hv, the alloys exhibited poor thermal stability and high volume fraction of precipitates following Co addition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Firstov GS, Van Humbeeck J, Koval YN. High temperature shape memory alloys some recent developments. Mater Sci Eng A. 2014;378:2–10.

    Article  Google Scholar 

  2. Padula II S, Bigelow G, Noebe R, Gaydosh D, Garg A. Challenges and progress in the development of high-temperature shape memory alloys based on NiTiX compositions for high-force actuator applications. In: Proceedings of the international conference on shape memory and superelastic technologies, ASM International, Metals Park (OH); 2006.

  3. Wadood A, Yamabe-Mitarai Y. TiAu and TiPt high temperature shape memory alloys. In: Proceeding of 2014 11th international Bhurban conference on applied sciences and technology, Pakistan; 2014.

  4. He Z, Wang F, Zhou J. Transformation, deformation and microstructure characteristics of Ru50Ta50 high temperature shape memory alloy. J Mater Sci Technol. 2006;22–5:634–8.

    Google Scholar 

  5. Sathish S, Mallik US, Raju TN. Microstructure and shape memory effect of Cu–Zn–Ni shape memory alloy. J Miner Mater Charact Eng. 2014;2:71–7.

    CAS  Google Scholar 

  6. Chen J, Li Z, Zhao YY. A high working temperature CuAlMnZr shape memory alloy. J Alloy Compd. 2009;480:481–4.

    Article  CAS  Google Scholar 

  7. Lelatko J, Morawiec H. High temperature CuAlNb based shape memory alloys. J Phys IV Fr. 2011;11:Pr8-487–92.

    Google Scholar 

  8. Yang S, Su Y, Wang C, Liu X. Microstructure and properties of Cu–Al–Fe high-temperature shape memory alloys. Mater Sci Eng B. 2014;185:67–73.

    Article  CAS  Google Scholar 

  9. Liu Y. Some factors affecting the transformation hysteresis in shape memory alloys. In: Chen HR, editor, chap 13. Nova Science; 2010; p. 361–9.

  10. Aydoğdu Y, Kürüm F, Kök M, Yakinci ZD, Aydoğdu A. Thermal properties, microstructure and microhardness of Cu–Al–Co shape memory alloy system. Trans Indian Inst Met. 2014;67–4:595–600.

    Article  Google Scholar 

  11. Guilemany JM, Fernandez J. Relationships between structure and hardness developed during the high temperature ageing of a smart Cu-based alloy. J Mater Sci. 1996;31:4981–4.

    Article  CAS  Google Scholar 

  12. Aydogdu A, Aydogdu Y, Adiguzel O. Long-term ageing behaviour of martensite in shape memory Cu–Al–Ni alloys. J Mater Process Technol. 2004;153–154:164–9.

    Article  Google Scholar 

  13. Kürüm F. The production of Cu–Al–Co shape memory alloys and investigation of physical properties. Thesis: M.Sc; 2013 (in Turkish).

    Google Scholar 

  14. Bublei IP, Koval YN, Titov PV. Martensitic transformation in alloys of the Cu–Al–Co system. Met Sci Heat Treat. 2008;50:606–8.

    Article  CAS  Google Scholar 

  15. Gil FJ, Guilemany JM. Effect of cobalt addition on grain growth kinetics in Cu–Zn–Al shape memory alloys. Intermetallics. 1998;6:445–50.

    Article  CAS  Google Scholar 

  16. Arruda GJ, Adorno AT, Benedetti AV, Fernandez J, Guilemany JM. Influence of silver additions on the structure and phase transformation of the Cu–13 wt% Al alloy. J Mater Sci. 1997;32:6299–303.

    Article  CAS  Google Scholar 

  17. Adorno AT, Silva RAG. Ageing behavior in the Cu–10 wt% Al and Cu–10 wt% Al–4 wt% Ag alloys. J Alloy Compd. 2009;473:139–44.

    Article  CAS  Google Scholar 

  18. Wang CP, Liu XJ, Ohnuma I, Kainuma R, Ishida K. Thermodynamic database of the phase diagrams in Cu–Fe base ternary systems. J Phase Equilib Diffus. 2004;25–4:320–8.

    Article  Google Scholar 

  19. Wei ZG, Peng HY, Zou WH, Yang DZ. Aging effects in a Cu–12Al–5Ni–2Mn–1Ti shape memory alloy. Metall Mater Trans A. 1997;28A:955–67.

    Article  CAS  Google Scholar 

  20. Gama JLL, Dantas CC, Quadros NF, Ferreira RAS, Yadava YP. Microstructure-mechanical property relationship to copper alloys with shape memory during thermomechnical treatments. Metall Mater Trans A. 2006;37A:77–87.

    Article  CAS  Google Scholar 

  21. Ma Y, Jiang C, Deng L, Xu H. Effects of composition and thermal cycle on transformation behaviors, thermal stability and mechanical properties of CuAlAg alloy. J Mater Sci Technol. 2003;19:431–4.

    Article  CAS  Google Scholar 

  22. Zengin R, Ceylan M. Influence of neutron irradiation on the characteristic of Cu–13 %wt. Al–4 %wt. Ni shape memory alloy. Mater Lett. 2003;58:55–9.

    Article  Google Scholar 

  23. Saud SN, Hamzah H, Abubakar T, Zamri M, Tanemura M. Influence of Ti additions on the martensitic phase transformation and mechanical properties of Cu–Al–Ni shape memory alloys. J Therm Anal Calorim. 2014;118:111–22.

    Article  CAS  Google Scholar 

  24. Yildiz K, Kok M. Study of martensite transformation and microstructural evolution of Cu–Al–Ni–Fe shape memory alloys: effect of heat treatments. J Therm Anal Calorim. 2013;115:1509–14.

    Article  Google Scholar 

  25. Sari U. Influences of 2.5wt% Mn addition on the microstructure and mechanical properties of Cu–Al–Ni shape memory alloys. Int J Miner Metall Mater. 2010;17:192–8.

    Article  CAS  Google Scholar 

  26. Kayali N, Özgen S, Adigüzel O. The influence of ageing on martensite morphology in shape memory CuZnAl alloys. J Phys IV. 1997;7:C5-317–22.

    Google Scholar 

  27. Matlakhova LA, Pereira EC, Matlakhov AN, Monteiro SN, Toledo R. Mechanical behavior and fracture characterization of a monocrystalline Cu–Al–Ni subjected to thermal cycling treatments under load. Mater Charact. 2008;59:1630–7.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We wish to thank Professor Yusuf Atıcı (Firat University) and Professor Yıldırım Aydoğdu (Gazi University) due to their helpful support, and also Dr. Selçuk Aktürk (Mugla Sitki Kocman University) for EDS analyses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Koksal Yildiz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yildiz, K., Kök, M. & Dağdelen, F. Cobalt addition effects on martensitic transformation and microstructural properties of high-temperature Cu–Al–Fe shape-memory alloys. J Therm Anal Calorim 120, 1227–1232 (2015). https://doi.org/10.1007/s10973-015-4395-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-015-4395-5

Keywords

Navigation