Skip to main content
Log in

Thermal degradation kinetics of two acrylic-based copolymers

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Acrylic copolymers and acrylates are of high interest in a wide variety of applications including coatings. This interest is increasing due to the possibility of being obtained by environmentally friendly procedures. In this research, the thermal stability in non-oxidizing atmosphere of two copolymers, a styrene/butyl acrylate and a diacetone acrylamide/butyl acrylate, is investigated by thermogravimetry (TG). A model consisting of a mixture of generalized logistic functions, which was used to fit calorimetric curves, was adapted to isothermal and non-isothermal contexts. The model was already applied to different materials and processes, being this time the first one that it is applied to TG degradation studies. In the current form, making use of multiple linear heating rates and isothermal experiments at several temperatures, the model allows for obtaining the true energy barrier and other kinetic parameters. The degradations of these copolymers were successfully fitted by the proposed model, and the main overlapping process was separately studied. The kinetic parameter values obtained from both compounds are compared to each other and to those reported from other cases where the model was applied. An important parameter is the critical temperature, which represents the minimum temperature for a given degradation processes to occur. Values of 495 and 525 K were obtained, respectively, for S/BA and BA/DAAM. True energy barrier values obtained for the degradation of these two polymers are approximately a half of those obtained in polymer crystallizations from the melt, and five times of those obtained in the case of an epoxy curing. The accelerating effect of applying a heating ramp is similar to that observed for polymer crystallization and smaller than that observed in thermoset curing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Sebio-Puñal T, Naya S, López-Beceiro J, Tarrío-Saavedra J, Artiaga R. Thermogravimetric analysis of wood, holocellulose, and lignin from five wood species. J Therm Anal Calorim. 2012;109:1163–7. doi:10.1007/s10973-011-2133-1.

    Article  Google Scholar 

  2. Artiaga R, Cao R, Naya S, González-Martín B, Mier J, García A. Separation of overlapping processes from TGA data and verification by EGA. J ASTM Int. 2005;2:12795. doi:10.1520/JAI12795.

    Article  Google Scholar 

  3. Tarrío-Saavedra J, Naya S, Francisco-Fernández M, Artiaga R, Lopez-Beceiro J. Application of functional ANOVA to the study of thermal stability of micro–nano silica epoxy composites. Chemom Intell Lab Syst. 2011;105:114–24. doi:10.1016/j.chemolab.2010.11.006.

    Article  Google Scholar 

  4. Brown ME. Introduction to thermal analysis: techniques and applications. Dordrecht: Kluwer; 2001.

    Google Scholar 

  5. Khawam A, Flanagan DR. Solid-state kinetic models: basics and mathematical fundamentals. J Phys Chem B. 2006;110:17315–28. doi:10.1021/jp062746a.

    Article  CAS  Google Scholar 

  6. Prime RB, Michalski C, Neag CM. Kinetic analysis of a fast reacting thermoset system. Thermochim Acta. 2005;429:213–7. doi:10.1016/j.tca.2004.11.029.

    Article  CAS  Google Scholar 

  7. Gotor FJ, Criado JM, Malek J, Koga N. Kinetic analysis of solid-state reactions: the universality of master plots for analyzing isothermal and nonisothermal experiments. J Phys Chem A. 2000;104:10777–82. doi:10.1021/jp0022205.

    Article  CAS  Google Scholar 

  8. Sánchez-Jiménez PE, Pérez-Maqueda LA, Perejón A, Criado JM. Generalized kinetic master plots for the thermal degradation of polymers following a random scission mechanism. J Phys Chem A. 2010;114:7868–76. doi:10.1021/jp103171h.

    Article  Google Scholar 

  9. Brown ME, Maciejewski M, Vyazovkin S, Nomen R, Sempere J, Burnham A, et al. Computational aspects of kinetic analysis: part A: the ICTAC kinetics project-data, methods and results. Thermochim Acta. 2000;355:125–43. doi:10.1016/S0040-6031(00)00443-3.

    Article  CAS  Google Scholar 

  10. Khawam A, Flanagan DR. Role of isoconversional methods in varying activation energies of solid-state kinetics: I. Isothermal kinetic studies. Thermochim Acta. 2005;429:93–102. doi:10.1016/j.tca.2004.11.030.

    Article  CAS  Google Scholar 

  11. Khawam A, Flanagan DR. Role of isoconversional methods in varying activation energies of solid-state kinetics: II. Nonisothermal kinetic studies. Thermochim Acta. 2005;436:101–12. doi:10.1016/j.tca.2005.05.015.

    Article  CAS  Google Scholar 

  12. Rios-Fachal M, Gracia-Fernández C, López-Beceiro J, Gómez-Barreiro S, Tarrío-Saavedra J, Ponton A, et al. Effect of nanotubes on the thermal stability of polystyrene. J Therm Anal Calorim. 2013;113:481–7. doi:10.1007/s10973-013-3160-x.

    Article  CAS  Google Scholar 

  13. López-Beceiro J, Gracia-Fernández C, Gómez-Barreiro S, Castro-García S, Sánchez-Andújar M, Artiaga R. Kinetic study of the low temperature transformation of Co(HCOO)3[(CH3)2NH2]. J Phys Chem C. 2012;116:1219–24. doi:10.1021/jp208070d.

    Article  Google Scholar 

  14. Koukiotis CG, Karabela MM, Sideridou ID. Mechanical properties of films of latexes based on copolymers BA/MMA/DAAM and BA/MMA/VEOVA-10/DAAM and the corresponding self-crosslinked copolymers using the adipic acid dihydrazide as crosslinking agent. Prog Org Coat. 2012;75:106–15.

    Article  CAS  Google Scholar 

  15. Tale NV, Jagtap RN. Synthesis of diacetone acrylamide monomer and the film properties of its copolymers. Iran Polym J. 2010;19:801–10.

    CAS  Google Scholar 

  16. Schuler B, Baumstark R, Kirsch S, Pfau A, Sandor M, Zosel A. Structure and properties of multiphase particles and their impact on the performance of architectural coatings. Prog Org Coat. 2000;40:139–50.

    Article  CAS  Google Scholar 

  17. Sajjadi S, Yianneskis M. Analysis of particle formation under monomer-starved conditions in emulsion polymerization reactors. Macromol Symp. 2004;206:201–14. doi:10.1002/masy.200450216.

    Article  CAS  Google Scholar 

  18. Cao R, Naya S, Artiaga R, García A, Varela A. Logistic approach to polymer degradation in dynamic TGA. Polym Degrad Stab. 2004;85:667–74. doi:10.1016/j.polymdegradstab.2004.03.006.

    Article  CAS  Google Scholar 

  19. Artiaga R, López-Beceiro J, Tarrío-Saavedra J, Gracia-Fernández C, Naya S, Mier JL. Estimating the reversing and non-reversing heat flow from standard DSC curves in the glass transition region. J Chemom. 2011;25:287–94. doi:10.1002/cem.1347.

    Article  CAS  Google Scholar 

  20. López-Beceiro J, Gracia-Fernández C, Artiaga R. A kinetic model that fits nicely isothermal and non-isothermal bulk crystallizations of polymers from the melt. Eur Polym J. 2013;49:2233–46. doi:10.1016/j.eurpolymj.2013.04.026.

    Article  Google Scholar 

  21. López-Beceiro J, Fontenot SA, Gracia-Fernández C, Artiaga R, Chartoff R. A logistic kinetic model for isothermal and nonisothermal cure reactions of thermosetting polymers. J Appl Polym Sci. 2014;131:n/a–n/a. doi:10.1002/app.40670.

  22. Artiaga R, Naya S, Cao R, Barbadillo F, Fuentes A. Application of mixture models to the study of polymer degradation by TGA. New York: Nova Science Publishers; 2007.

    Google Scholar 

  23. Naya S, Cao R, de Ullibarri IL, Artiaga R, Barbadillo F, García A. Logistic mixture model versus Arrhenius for kinetic study of material degradation by dynamic thermogravimetric analysis. J Chemom. 2006;20:158–63.

    Article  CAS  Google Scholar 

  24. Wojdyr M. Fityk: a general-purpose peak fitting program. J Appl Crystallogr. 2010;43:1126–8. doi:10.1107/S0021889810030499.

    Article  CAS  Google Scholar 

  25. Vannice MA. Kinetics of catalytic reactions. New York: Springer; 2005.

    Book  Google Scholar 

  26. MacCallum JR, Tanner J. The kinetics of thermogravimetry. Eur Polym J. 1970;6:1033–9. doi:10.1016/0014-3057(70)90035-2.

    Article  CAS  Google Scholar 

  27. Leskovac M, Kovacevic V, Fles D, Hace D. Thermal stability of poly(methyl methacrylate-co-butyl acrylate) and poly(styrene-co-butyl acrylate) polymers. Polym Eng Sci. 1999;39:600–8. doi:10.1002/pen.11449.

    Article  CAS  Google Scholar 

  28. Tarrío-Saavedra J, López-Beceiro J, Naya S, Francisco-Fernández M, Artiaga R. Simulation study for generalized logistic function in thermal data modeling. J Therm Anal Calorim. 2014;118:1253–68. doi:10.1007/s10973-014-3887-z.

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the Spanish Ministerio de Ciencia e Innovación for the provision of funds MTM2011-22392.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Artiaga.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

López-Beceiro, J., Álvarez-García, A., Martins, S. et al. Thermal degradation kinetics of two acrylic-based copolymers. J Therm Anal Calorim 119, 1981–1993 (2015). https://doi.org/10.1007/s10973-014-4386-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-014-4386-y

Keywords

Navigation