Skip to main content
Log in

AgNPs polypropylene gel films–thermal study and antibacterial activity

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

In this work, antibacterial activity was investigated in polypropylene gel containing silver nanoparticles (AgNPs). The PP was modified by crosslink under gamma radiation process of pristine PP, in acetylene atmosphere and dose of 12.5 kGy, followed by thermal treatment. The thin films of the polypropylene gel (AgNPs-GelPP) were obtained by extraction in boiling xylene for period of 12 h at 138 °C, followed by decantation at room temperature of 25 °C. The films of AgNPs-GelPP were characterized using scanning electron microscopy, energy-dispersive spectroscopy, transmission electron microscopy (TEM), differential scanning calorimetry (DSC), and X-ray diffraction. Cytotoxicity tests and reduction of the colony forming number unit were performed in the films. Efficiency of the silver nanoparticles on antibacterial activity was evaluated and analyzed versus DSC. The results showed that crystallinity cooperates to bactericidal effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Lugao AB, Otaguro H, Parra DF, Yoshiga A, Lima LFCP, Artel BWH, Liberman S. Review on the production process and uses of controlled rheology polypropylene-gamma radiation versus electron beam processing. Radiat Phys Chem. 2007;76:1688.

    Article  CAS  Google Scholar 

  2. Lugao AB, Artel BWH, Yoshiga A, Lima LFCP, Parra DF, Bueno JR, Liberman S, Farrah M, Terçariol WR, Otaguro H. Production of high melt strength polypropylene by gamma irradiation. Radiat Phys Chem. 2007;76:1691–5.

    Article  CAS  Google Scholar 

  3. Spadaro G, Valenza A. Calorimetric analysis of an isotactic polypropylene gamma-irradiated in vacuum. J Therm Anal Calorim. 2000;61:586–96.

    Article  Google Scholar 

  4. Chapiro A. Radiation chemistry of polymeric systems. London: Interscience; 1962. p. 385–493.

    Google Scholar 

  5. Keene B, Bourham M, Viswanath V, Avci H, Kotek R. Characterization of degradation of polypropylene nonwovens irradiated by γ-ray. J. Appl Polym Sci. 2014;131:1–10.

  6. Otaguro H, Lima LFCP, Parra DF, Lugao AB, Chinelatto MA, Canevarolo SV. High-energy radiation forming chain scission and branching in polypropylene. Radiat Phys Chem. 2010;79:318–24.

    Article  CAS  Google Scholar 

  7. Zagórski ZP. Modification, degradation and stabilization of polymers in view of the classification of radiation spurs. Radiat Phys Chem. 2002;63:9–19.

    Article  Google Scholar 

  8. Zagórski ZP, Rafalski A. Free radicals in irradiated unstabilized polypropylene, as seen by diffuse refection absorption-spectrophotometry. Radiat Phys Chem. 1998;52:257.

    Article  Google Scholar 

  9. Zagórski ZP. Advances in radiation chemistry of polymers. IAEA-TECDOC-1420. Proceedings of a technical meeting held in Notre Dame, 2003: 21-1.

  10. Oliani WL, Parra DF, Riella HG, Lima LFCP, Lugao AB. Polypropylene nanogel: ‘‘Myth or reality’’. Radiat Phys Chem. 2012;81:1460–4.

    Article  CAS  Google Scholar 

  11. Oliani WL, Parra DF, Fermino DM, Riella HG, Lima LFCP, Lugao AB. Study of gel formation by ionizing radiation in polypropylene. Radiat Phys Chem. 2013;84:20–5.

    Article  CAS  Google Scholar 

  12. Matsuda H, Inoue T, Okabe M, Ukaji T. Study of polyolefin gel in organic solvents. I structure of isotactic polypropylene gel in organic solvents. Polym J. 1987;19:323–9.

    Article  CAS  Google Scholar 

  13. Dastjerdi R, Montazer MA. A review on the application of inorganic nano-structured materials in the modification of textiles: focus on antimicrobial properties. Colloids Surf B. 2010;79:5–18.

    Article  CAS  Google Scholar 

  14. Munoz-Bonilla A, Fernández-García M. Polymeric materials with antimicrobial activity. Prog Polym Sci. 2012;37:281–339.

    Article  CAS  Google Scholar 

  15. Popović ZK, Dragašević M, Krklješ A, Popović S, Jovanović Ž, Tomić S, Stanković VM. On the use of radiation technology for nanoscale engineering of silver/hydrogel based nanocomposites for potential biomedical application. Open Conf Proc J. 2010;1:200–6.

    Article  Google Scholar 

  16. Damm C, Münstedt H, Rösch A. The antimicrobial efficacy of polyamide 6/silver-nano-and microcomposites. Mater Chem Phys. 2008;108:61–6.

    Article  CAS  Google Scholar 

  17. Radheshkumar C, Münstedt H. Antimicrobial polymers from polypropylene/silver composites-Ag + release measured by anode stripping voltammetry. React Funct Polym. 2006;66:780–8.

    Article  CAS  Google Scholar 

  18. Dehnavi AS, Aroujalian A, Raisi A, Fazel S. Preparation and characterization of polyethylene/silver nanocomposite films with antibacterial activity. J Appl Polym Sci. 2013;127:1180.

    Article  CAS  Google Scholar 

  19. Sotiriou GA, Pratsinis SE. Engineering nanosilver as an antibacterial, biosensor and bioimaging material. Curr Opin Chem Eng. 2011;1:3.

    Article  CAS  Google Scholar 

  20. Yoshiga A, Otaguro H, Parra DF, Lima LFCP, Lugao AB. Controlled degradation and crosslinking of polypropylene induced by gamma radiation and acetylene. Polym Bull. 2009;63:397-09.

    Article  Google Scholar 

  21. Oliani WL, Parra DF, Lima LFCP, Lugao AB. Morphological characterization of branched PP under stretching. Polym Bull. 2012;68:2121.

    Article  CAS  Google Scholar 

  22. ASTM D 2765:2006–Standard test methods for determination of gel content and swell ratio of crosslinked ethylene plastics.

  23. Mark JE. Physical properties of polymers handbook. 2nd ed. New York: Springer; 2007.

    Book  Google Scholar 

  24. Silvestre C, Di-Lorenzo ML, Di-Pace E. Crystallization of Polyolefins. In: Vasile C, editor. Handbook of Polyolefins. 2rd ed. New York: Marcel Dekker; 2000.

    Google Scholar 

  25. ISO 10993-5:2009 – Biological evaluation of medical devices. Pat 5: Tests for in vitro cytotoxicity

  26. Ciapetti G, Granchi D, Verri E, Savarino L, Cavedagna D, Pizzoferrato A. Application of a neutral red and amido black staining for rapid, reliable cytotoxicity testing of biomaterials. Biomaterials. 1996;17:1259-4.

    Google Scholar 

  27. Rogero SO, Malmonge SM, Lugao AB, Ikeda TI, Miyamaru L, Cruz AS. Biocompatibility study of polymeric biomaterials. Artif Organs. 2003;27(5):424–7.

    Article  CAS  Google Scholar 

  28. JIS Z 2801:2010 - JAPANESE industrial standard - antibacterial products - test for antibacterial activity and efficacy.

  29. Zhang B, Chen J, Zhang X, Shen C. Crystal morphology and structure of the β-form of isotactic polypropylene under supercooled extrusion. J Appl Polym Sci. 2011;120:3255-4.

  30. Liu M, Guo B, Du M, Chen F, Jia D. Halloysite nanotubes as a novel β-nucleating agent for isotactic polypropylene. Polymer. 2009;50:3022.

  31. Ding Q, Zhang Z, Wang C, Jiang J, Li G, Mai K. Non-isothermal crystallization kinetics and morphology of wollastonite-filled β-isotactic polypropylene composites. J Therm Anal Calorim. 2014;115:675–88.

  32. Romankiewicz A, Sterzynski T, Brostow W. Structural characterization of α-and β-nucleated isotactic polypropylene. Polym Int. 2004;53:2086–91.

  33. Liang GD, Bao SP, Tjong SC. Microstructure and properties of polypropylene composites filled with silver and carbon nanotube nanoparticles prepared by melt-compounding. Mater Sci Eng, B. 2007;142:55-1.

    Article  Google Scholar 

  34. Zhang N, Zhang Q, Wang K, Deng H, Fu Q. Combined effect of β-nucleating agent and multi-walled carbon nanotubes on polymorphic composition and morphology of isotactic polypropylene. J Therm Anal Calorim. 2012;107:733–43.

  35. Thomas S, Girei AS, La-Juahani AA, Mezghani K, De SK, Atieh MA. Effect of phenol functionalized carbon nanotube on mechanical, dynamics mechanical, and thermal properties of isotactic polypropylene nanocomposites. Polym Eng Sci. 2012;52:525-1.

    Article  Google Scholar 

  36. Kim D, Jeong S, Moon J. Synthesis of silver nanoparticles using the polyol process and the influence of precursor injection. Nanotechnology. 2006;17:4019-4.

    Google Scholar 

  37. Chudasama B, Vala AK, Andhariya N, Mehta RV, Upadhariya RVJ. Highly bacterial resistant silver nanoparticles: synthesis and antibacterial activities. Nanopart Res. 2010;12:1677-5.

    Article  Google Scholar 

  38. Parameshwaran R, Jayavel R, Kalaiselvam S. Study on thermal properties of organic ester phase-change material embedded with silver nanoparticles. J Therm Anal Calorim. 2013;114:845–58.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by CAPES. The authors acknowledge the Centre of Science and Technology of Materials–CCTM/IPEN, for microscopy analysis (SEM), Project FAPESP 2012-00236-1, Molecular Nanotechnology Group for X-ray diffraction analysis, Project CAPES Pro-equipment’s 01/2007, IPEN/CNEN; the technicians Mr. Eleosmar Gasparin and Nelson R. Bueno, for technical support and Companhia Brasileira de Esterilização (CBE) for irradiation of the samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Washington Luiz Oliani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oliani, W.L., de Lima, L.F.C.P., Rogero, S.O. et al. AgNPs polypropylene gel films–thermal study and antibacterial activity. J Therm Anal Calorim 119, 1963–1970 (2015). https://doi.org/10.1007/s10973-014-4353-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-014-4353-7

Keywords

Navigation