Skip to main content
Log in

Co-pyrolysis behaviors and kinetics of sewage sludge and pine sawdust blends under non-isothermal conditions

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Mixing of sewage sludge with classical biomass, such as pine sawdust, can compensate the weaknesses of one fuel by another. The pyrolytic characteristics of sewage sludge (SS), pine sawdust (PS), and their blends were investigated under nitrogen atmosphere by dynamic thermogravimetric analysis at three heating rates of 10, 20, and 30 K min−1. Three thermal stages (dehydration, devolatilization, further carbonization) were identified during the pyrolysis of single materials, as well as the blends. Blending of PS with SS can improve the devolatilizaion properties of SS, whereas the initial decomposition temperature increases with the increase in proportion of PS. It has been found that the pyrolytic characteristics of the blends can be estimated from those of parent fuels, suggesting that no significant synergistic effect existed during thermal degradation of PS/SS blends. The dependence of apparent activation energy on conversion obtained by Friedman method and distributed activation energy model (DAEM) revealed that the blends can be considered as multistage process. The results indicated that the DAEM can provide reasonable fits to the experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Manara P, Zabaniotou A. Towards sewage sludge based biofuels via thermochemical conversion–a review. Renew Sust Energy Rev. 2012;16:2566–82.

    Article  CAS  Google Scholar 

  2. Werle S, Wilk RK. A review of methods for the thermal utilization of sewage sludge: the Polish perspective. Renew Energy. 2010;35:1914–9.

    Article  CAS  Google Scholar 

  3. Di Blasi C. Modeling chemical and physical processes of wood and biomass pyrolysis. Prog Energ Combust. 2008;34:47–90.

    Article  Google Scholar 

  4. Rulkens W. Sewage sludge as a biomass resource for the production of energy: overview and assessment of the various options. Energy Fuel. 2007;22:9–15.

    Article  Google Scholar 

  5. Pinto F, André RN, Lopes H, Dias M, Gulyurtlu I, Cabrita I. Effect of experimental conditions on gas quality and solids produced by sewage sludge cogasification. 2. Sewage sludge mixed with biomass. Energy Fuel. 2008;22:2314–25.

    Article  CAS  Google Scholar 

  6. Várhegyi G. Aims and methods in non-isothermal reaction kinetics. J Anal Appl Pyrolysis. 2007;79:278–88.

    Article  Google Scholar 

  7. Vyazovkin S. Two types of uncertainty in the values of activation energy. J Therm Anal Calorim. 2001;64:829–35.

    Article  CAS  Google Scholar 

  8. Burnham AK, Dinh L. A comparison of isoconversional and model-fitting approaches to kinetic parameter estimation and application predictions. J Therm Anal Calorim. 2007;89:479–90.

    Article  CAS  Google Scholar 

  9. Vyazovkin S, Burnham AK, Criado JM, Pérez-Maqueda LA, Popescu C, Sbirrazzuoli N. ICTAC kinetics committee recommendations for performing kinetic computations on thermal analysis data. Thermochim Acta. 2011;520:1–19.

    Article  CAS  Google Scholar 

  10. Várhegyi G, Szabó P, Antal MJ. Kinetics of charcoal devolatilization. Energy Fuel. 2002;16:724–31.

    Article  Google Scholar 

  11. Zhao HY, Cao Y, Sit SP, Lineberry Q, Pan WP. Thermal characteristics of bitumen pyrolysis. J Therm Anal Calorim. 2012;107:541–7.

    Article  CAS  Google Scholar 

  12. Li C, Suzuki K. Kinetic analyses of biomass tar pyrolysis using the distributed activation energy model by TG/DTA technique. J Therm Anal Calorim. 2009;98:261–6.

    Article  CAS  Google Scholar 

  13. Li L, Wang G, Wang S, Qin S. Thermogravimetric and kinetic analysis of energy crop Jerusalem artichoke using the distributed activation energy model. J Therm Anal Calorim. 2013;114:1183–9.

    Article  CAS  Google Scholar 

  14. Herce C, de Caprariis B, Stendardo S, Verdone N, De Filippis P. Comparison of global models of sub-bituminous coal devolatilization by means of thermogravimetric analysis. J Therm Calorim. 2014;117:507–16.

    CAS  Google Scholar 

  15. Please C, McGuinness M, McElwain D. Approximations to the distributed activation energy model for the pyrolysis of coal. Combust Flame. 2003;133:107–17.

    Article  CAS  Google Scholar 

  16. Cai J, Ji L. Pattern search method for determination of DAEM kinetic parameters from nonisothermal TGA data of biomass. J Math Chem. 2007;42:547–53.

    Article  CAS  Google Scholar 

  17. Miura K, Maki T. A simple method for estimating f (E) and k 0 (E) in the distributed activation energy model. Energy Fuel. 1998;12:864–9.

    Article  CAS  Google Scholar 

  18. Soria-Verdugo A, Garcia-Hernando N, Garcia-Gutierrez L, Ruiz-Rivas U. Analysis of biomass and sewage sludge devolatilization using the distributed activation energy model. Energy Convers Manag. 2013;65:239–44.

    Article  CAS  Google Scholar 

  19. Yang H, Yan R, Chen H, Lee DH, Zheng C. Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel. 2007;86:1781–8.

    Article  CAS  Google Scholar 

  20. Whitely N, Ozao R, Cao Y, Pan W-P. Multi-utilization of chicken litter as a biomass source. Part II. Pyrolysis. Energy Fuel. 2006;20:2666–71.

    Article  CAS  Google Scholar 

  21. Biagini E, Lippi F, Petarca L, Tognotti L. Devolatilization rate of biomasses and coal–biomass blends: an experimental investigation. Fuel. 2002;81:1041–50.

    Article  CAS  Google Scholar 

  22. Francioso O, Rodriguez-Estrada MT, Montecchio D, Salomoni C, Caputo A, Palenzona D. Chemical characterization of municipal wastewater sludges produced by two-phase anaerobic digestion for biogas production. J Hazard Mater. 2010;175:740–6.

    Article  CAS  Google Scholar 

  23. Ghetti P, Ricca L, Angelini L. Thermal analysis of biomass and corresponding pyrolysis products. Fuel. 1996;75:565–73.

    Article  CAS  Google Scholar 

  24. Shuang-quan Z, Xiao-ming Y, Zhi-yuan Y, Ting-ting P, Ming-jian D, Tian-yu S. Study of the co-pyrolysis behavior of sewage-sludge/rice-straw and the kinetics. Procedia Earth Planet Sci. 2009;1:661–6.

    Article  Google Scholar 

  25. Morgan TJ, Kandiyoti R. Pyrolysis of coals and biomass: analysis of thermal breakdown and its products. Chem Rev. 2013;114:1547–607.

    Article  Google Scholar 

  26. Maiti S, Purakayastha S, Ghosh B. Thermal characterization of mustard straw and stalk in nitrogen at different heating rates. Fuel. 2007;86:1513–8.

    Article  CAS  Google Scholar 

  27. Caballero J, Front R, Marcilla A, Conesa J. Characterization of sewage sludges by primary and secondary pyrolysis. J Anal Appl Pyrolysis. 1997;40:433–50.

    Article  Google Scholar 

  28. Jeguirim M, Trouvé G. Pyrolysis characteristics and kinetics of Arundo donax using thermogravimetric analysis. Bioresour Technol. 2009;100:4026–31.

    Article  CAS  Google Scholar 

  29. Luangkiattikhun P, Tangsathitkulchai C, Tangsathitkulchai M. Non-isothermal thermogravimetric analysis of oil-palm solid wastes. Bioresour Technol. 2008;99:986–97.

    Article  CAS  Google Scholar 

  30. Di Nola G, De Jong W, Spliethoff H. TG-FTIR characterization of coal and biomass single fuels and blends under slow heating rate conditions: partitioning of the fuel-bound nitrogen. Fuel Process Technol. 2010;91:103–15.

    Article  Google Scholar 

  31. Fiori L, Valbusa M, Lorenzi D, Fambri L. Modeling of the devolatilization kinetics during pyrolysis of grape residues. Bioresour Technol. 2012;103:389–97.

    Article  CAS  Google Scholar 

  32. Biagini E, Fantei A, Tognotti L. Effect of the heating rate on the devolatilization of biomass residues. Thermochim Acta. 2008;472:55–63.

    Article  CAS  Google Scholar 

  33. Aboyade AO, Hugo TJ, Carrier M, Meyer EL, Stahl R, Knoetze JH, et al. Non-isothermal kinetic analysis of the devolatilization of corn cobs and sugar cane bagasse in an inert atmosphere. Thermochim Acta. 2011;517:81–9.

    Article  CAS  Google Scholar 

  34. Šimon P, Thomas P, Dubaj T, Cibulková Z, Peller A, Veverka M. The mathematical incorrectness of the integral isoconversional methods in case of variable activation energy and the consequences. J Therm Anal Calorim. 2014;115:853–9.

    Article  Google Scholar 

  35. Sichone K. Pyrolysis of sawdust. PhD thesis. University of Waikato. 2013.

Download references

Acknowledgements

The work described in this paper was financially supported by SRF for ROCS, SEM, China, Fundamental Research Funds for the Central Universities (2013TS070, Cxy13q030.cx14-011.cx14-012.01-09-070098), the National Natural Science Foundation of China (21276100), and Hubei Provincial Natural Science Foundation, China (No. 2014CFB441). The authors are also grateful to Cai Junmeng (Shanghai Jiao Tong University) who provided valuable comments and suggestions to the pyrolysis kinetic analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiquan Hu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, X., Chen, Z., Xiao, B. et al. Co-pyrolysis behaviors and kinetics of sewage sludge and pine sawdust blends under non-isothermal conditions. J Therm Anal Calorim 119, 2269–2279 (2015). https://doi.org/10.1007/s10973-014-4321-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-014-4321-2

Keywords

Navigation