Skip to main content
Log in

Kinetics of thermal degradation of water borne polyurethane dispersion containing polycaprolactone with either isophorone diisocyanate or metatetramethyl xylene diisocyanate

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Water borne polyurethane dispersions synthesized using poly caprolactone–isophorone diisocyanate combination and caprolactone–metatetramethyl xylene diisocyanate combination. Thermal stability of the polyurethane dispersions was studied using thermogravimetric technique. The activation energy of decomposition of these polyurethane dispersions was determined by applying classical kinetic models and isoconversional method. Though the classical kinetic models assume constant activation energy for any reaction, the activation energy determined is in good agreement with that obtained via isoconversional analysis. However, the advantage of isoconversional analysis is highlighted compared to classical kinetic models based on the mechanism delineating capacity of isoconversional analysis. The present work compares the thermal stability of the aqueous polyurethane dispersion formed from poly caprolactone–isophorone diisocyanate with caprolactone–metatetramethyl xylene diisocyanate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Gao XY, Zhou R, Guo YP, Zhu YC, Chen X, Zheng YH, Gao W, Ma XY, Wang ZC. Synthesis and characterization of well-dispersed polyurethane/CaCO3 nanocomposites. Colloid Surf A Physicochem Eng Asp. 2010;371:1–7.

    Article  CAS  Google Scholar 

  2. Vrsaljko D, Leskovac M, Blagojevic SI, Kovacevic V. Interphase phenomena in nanoparticulate filled polyurethane/poly(vinyl acetate) polymer systems. Polym Eng Sci. 2008;48:1931–8.

    Article  CAS  Google Scholar 

  3. Xia H, Song M. Preparation and characterization of polyurethane–carbon nanotube composites. Soft Matter. 2005;1:386–94.

    Article  CAS  Google Scholar 

  4. Wu Y, Natansohn A, Rochon P. Photoinduced birefringence and surface relief gratings in polyurethane elastomers with azobenzene chromophore in the hard segment. Macromolecules. 2004;37:6090–5.

    Article  CAS  Google Scholar 

  5. Wu GM, Kong ZW, Chen CF, Chen J, Huo SP, Jiang JC. Kinetics of the cross-linking reaction of nonionic polyol dispersion from terpene-maleic ester type epoxy resin. J Therm Anal Calorim. 2013;111:735–41.

    Article  CAS  Google Scholar 

  6. Byczynski Lukasz. Effect of different polyethers on surface and thermal properties of poly(urethane-siloxane) copolymers modified with side chain siloxane. J Therm Anal Calorim. 2013;114:397–408.

    Article  CAS  Google Scholar 

  7. Vunain E, Mishra AK, Krause RW. Ethylene-vinyl acetate (EVA)/polycaprolactone (PCL)—Fe3O4 composites. J Therm Anal Calorim. 2013;114:791–7.

    Article  CAS  Google Scholar 

  8. Dieterich D, Keberle W, Witt H. Polyurethane ionomers, a new class of block polymers. Angew Chem Int Eng. 1970;9:40–50.

    Article  CAS  Google Scholar 

  9. Dieterich D. Aqueous emulsions, dispersions and solutions of polyurethanes; synthesis and properties. Prog Org Coat. 1981;9:281–340.

    Article  CAS  Google Scholar 

  10. Frisch KC, Klempner D. Advances in urethane science and technology, vol. 10. Westport: Technomic Publishing Co.; 1987.

    Google Scholar 

  11. Ruscall R, Corner T, Stageman JF. Polymer colloids. New York: Elsevier; 1985.

    Google Scholar 

  12. Apburn CH. Polyurethane elastomers. 2nd ed. Oxford: Elsevier; 1991.

    Google Scholar 

  13. Oertel G. Polyurethane handbook. 2nd ed. Munich: Carl Hanser Verlag; 1993.

    Google Scholar 

  14. Vincent BJ, Natarajan B, available in http://dx.doi.org/10.4236/ojopm.2014.41006. Accessed 5 Feb 2014.

  15. Brown ME, Dollimore D, Galwey AK. Comprehensive chemical kinetics, vol. 22. Amsterdam: Elsevier; 1988. p. 99.

    Google Scholar 

  16. Kissinger HE. Reaction kinetics in differential thermal analysis. Anal Chem. 1957;29:1702–6.

    Article  CAS  Google Scholar 

  17. Augis JA, Bennett JE. Calculation of the Avrami parameters for heterogeneous solid state reactions using a modified the Kissinger method. J Therm Anal. 1978;13:283–92.

    Article  CAS  Google Scholar 

  18. Mahadevan S, Giridhar A, Singh AK. Calorimetric measurements on As-Sb-Se glasses. J Non-Cryst Solids. 1986;88:11–34.

    Article  CAS  Google Scholar 

  19. Marjorie E. Ducote, Huntsville, Ala. TMXDI, curing agent for hydroxy terminated propellent binders, U. S. Patent 4913753, April 3, 1990.

  20. Abu-Sehly AA. Variation of the activation energy of crystallization in Se81.5Te16Sb2.5 chalcogenide glass: isoconversional analysis. Thermochim Acta. 2009;485:14–9.

    Article  CAS  Google Scholar 

  21. Joraid AA. Estimating the activation energy for the non-isothermal crystallization of an amorphous Sb9.1Te20.1Se70.8 alloy. Thermochim Acta. 2007;456:1–6.

    Article  CAS  Google Scholar 

  22. Lu MG, Lee JY, Shim MJ, Kim SW. Thermal degradation of film cast from aqueous polyurethane dispersions. J Appl Polym Sci. 2002;85:2552–8.

    Article  CAS  Google Scholar 

  23. Mirjana Jovičić, Radmila Radičević, Jelena Pavličević, Oskar Bera. Isoconversional kinetic analysis of the alkyd/melamine resins curing. Chem Ind Chem Eng Q. 2013;19:253–62.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bosco Joseph Vincent.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vincent, B.J., Natarajan, B. Kinetics of thermal degradation of water borne polyurethane dispersion containing polycaprolactone with either isophorone diisocyanate or metatetramethyl xylene diisocyanate. J Therm Anal Calorim 119, 1373–1379 (2015). https://doi.org/10.1007/s10973-014-4264-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-014-4264-7

Keywords

Navigation