Skip to main content
Log in

Specific heat and magnetocaloric effect studies in multiferroic YMnO3

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Multiferroic bulk YMnO3 sample was prepared through the solid state reaction method. After characterizing the sample structurally, a systematic investigation of magnetization and specific heat has been undertaken over a temperature range 2–300 K under different magnetic fields. Based on these studies, it has been found that the sample exhibited a paramagnetic to ferrimagnetic phase transition of spin glass type at ~42 K that could be attributed to spin cantering. The magnetic transition peak seen in the magnetic entropy change versus temperature curves became broader with increasing magnetic field. A large magnetic entropy change of ~1 J mol−1 K−1 was obtained under a magnetic field change of 0–10 T.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Aken BBV, Palstra TTM, Filippetti A, Spaldin NA. The origin of ferroelectricity in magnetoelectric YMnO3. Nat Mater. 2004;3:164–70.

    Article  Google Scholar 

  2. Fiebig M, Fröhlich D, Kohn K, Leute S, Lottermoser T, Pavlov VV, Pisarev RV. Determination of the magnetic symmetry of hexagonal manganites by second harmonic generation. Phys Rev Lett. 2000;84:5620–3.

    Article  CAS  Google Scholar 

  3. Lorenz B, Litvinchuk AP, Gospodinov MM, Chu CW. Field-induced reentrant novel phase and a ferroelectric-magnetic order coupling in HoMnO3. Phys Rev Lett. 2004;92:087204.

    Article  CAS  Google Scholar 

  4. Alicea J, Motrunich OI, Hermele M, Fisher MPA. Criticality in quantum triangular antiferromagnets via fermionized vortices. Phys Rev B. 2005;72:064407–23.

    Article  Google Scholar 

  5. Helton JS, Singh DK, Nair HS, Elizabeth S. Magnetic order of the hexagonal rare-earth manganite Dy0.5Y0.5MnO3. Phys Rev B. 2011;84:064434–6.

    Article  Google Scholar 

  6. Liu P, Wang XL, Cheng ZX, Du Y, Kimura H. Structural, dielectric, antiferromagnetic, and thermal properties of the frustrated hexagonal Ho1−x Er x MnO3 manganites. Phys Rev B. 2011;83:144404–8.

    Article  Google Scholar 

  7. Midya A, Khan N, Bhoi D, Mandal P. 3d-4f spin interaction induced giant magnetocaloric effect in zircon-type DyCrO4 and HoCrO4 compounds. Appl Phys Lett. 2013;103:092402.

    Article  Google Scholar 

  8. Chatterji T, Ouladdiaf B, Henry PF, Bhattacharya D. Magnetoelastic effects in multiferroic YMnO3. J Phys Condens Matter. 2012;24:336003–6.

    Article  Google Scholar 

  9. Huang ZJ, Cao Y, Sun YY, Xue YY, Chu CW. Coupling between the ferroelectric and antiferromagnetic orders in YMnO3. Phys Rev B. 1997;56:2623–6.

    Article  CAS  Google Scholar 

  10. Gschneidner Jr KA, Pecharsky VK, Tsokol AO. Recent developments in magnetocaloric materials. Rep Prog Phys. 2005;68:1479–539.

    Article  Google Scholar 

  11. Provenzano V, Li J, King T, Canavan E, Shirron P, DiPirro M, Shull RD. Enhanced magnetocaloric effects in R3(Ga1−x Fe x )5O12 (R = Gd, Dy, Ho; 0 < x<1) nanocomposites. J Magn Magn Mater. 2003;266:185–93.

    Article  CAS  Google Scholar 

  12. Eerenstein W, Mathur ND, Scott JF. Multiferroic and magnetoelectric materials. Nature. 2006;442(7104):759–65.

    Article  CAS  Google Scholar 

  13. Cheong SW, Mostovoy M. Multiferroics: a magnetic twist for ferroelectricity. Nat mater. 2007;6(1):13–20.

    Article  CAS  Google Scholar 

  14. Fiebig M. Revival of the magnetoelectric effect. J Phys D Appl Phys. 2005;38(8):R123–52.

    Article  CAS  Google Scholar 

  15. Chen WR, Zhang FC, Miao J, Xu B, Dong XL, Cao LX, Qiu XG, Zhao BR. Re-entrant spin glass behavior in Mn-rich YMnO3. Appl Phys Lett. 2005;87(042508):1–3.

    Google Scholar 

  16. Koehler WC, Yakel HL, Wollan EO, Cable JW. A note on the magnetic structures of rare earth manganese oxides. Phys Lett. 1964;9(2):93–5.

    Article  CAS  Google Scholar 

  17. Karche BR, Khasbardar BV, Vaingankar AS. X-ray, SEM and magnetic properties of Mg-Cd ferrites. J Magn Magn Mater. 1997;168:292–8.

    Article  CAS  Google Scholar 

  18. Smit J, Wijin HPJ. Ferrites. 1st ed. New York: Wiley; 1959.

    Google Scholar 

  19. Smit J. Magnetic properties of materials. New York: McGraw-Hill; 1971. p. 89.

    Google Scholar 

  20. Khan MHR, Hossain AKMA. Reentrant spin glass behavior and large initial permeability of Co0.5-xMnxZn0.5Fe2O4. J Magn Magn Mater. 2012;324:550–8.

    Article  CAS  Google Scholar 

  21. Kimura T, Ishihara S, Shintani H, Arima T, Takahashi KT, Ishizaka K, Tokura Y. Distorted perovskite with e 1g configuration as a frustrated spin system. Phys Rev B. 2003;68(060403(R)):1–4.

    Google Scholar 

  22. Kumar NP, Lalitha G, Reddy PV. Specific heat and magnetization studies of RMnO3 (R = Sm, Eu, Gd, Tb and Dy) multiferroics. Phys Scr. 2011;83(045701):1–8.

    Google Scholar 

  23. Tomuta DG, Ramakrishnan S, Nieuwenhuys GJ, Mydosh JA. The magnetic susceptibility, specific heat and dielectric constant of hexagonal YMnO3, LuMnO3 and ScMnO3. J Phys Condens Matter. 2001;13:4543–52.

    Article  CAS  Google Scholar 

  24. Pecharsky VK, Gschneidner JKA. Giant Magnetocaloric Effect in Gd5(Si2Ge2). Phys Rev Lett. 1997;78(23):4494–7.

    Article  CAS  Google Scholar 

  25. Korolev VV, Arefyev IM, Ramazanova AG. The magnetocaloric effect of superfine magnets. J Therm Anal Calorim. 2008;92(3):691–5.

    Article  CAS  Google Scholar 

  26. Cheng JG, Sui Y, Wang XJ, Liu ZG, Miao JP, Huang XQ, Lu Z, Qian ZN, Su WH. Specific heat of single-crystal PrMnO3. J Phys Condens Matter. 2005;17:5869–79.

    Article  CAS  Google Scholar 

  27. Hamad Mahmoud A. Magnetocaloric properties of La0.6Ca0.4MnO3. J Therm Anal Calorim. 2013;113(2):609–13.

    Article  CAS  Google Scholar 

  28. Hamad Mahmoud A. Magnetocaloric effect in La1.25Sr0.75MnCoO6. J Therm Anal Calorim. 2014;115(1):523–6.

    Article  CAS  Google Scholar 

  29. Tishin AM, Spichkin YI. The Magnetocaloric effect and its applications. London: Institute of Physics Publishing; 2003.

    Book  Google Scholar 

  30. Franco V, Conde A. Scaling laws for the magnetocaloric effect in second order phase transitions: from physics to applications for the characterization of materials International. J Refrig. 2010;33:465–73.

    Article  CAS  Google Scholar 

  31. M’nassri R, Cheikhrouhou A. Evolution of Magnetocaloric Behavior in Oxygen Deficient La2/3Ba1/3MnO3−δ Manganites. J Supercond Novel Magn. 2014;27:1463–8.

    Article  Google Scholar 

  32. M’nassri R. Field dependence of magnetocaloric properties in La0.6Pr0.4Fe10.7Co0.8Si1.5. J Supercond Novel Magn. 2014;27:1787–94.

    Article  Google Scholar 

  33. Biswas A, Chandra S, Phan Manh-Huong, Srikanth H. Magnetocaloric properties of nanocrystalline LaMnO3: enhancement of refrigerant capacity and relative cooling power. J Alloy Compd. 2012;545:157–61.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to DRDO, Govt. of India for supporting the present research work through a Research project (No. EPR/ER/0803750/M/01/1207). Second author thanks CSIR for providing fellowship. We also thank the Director, UGC-DAE CSR, Indore and Dr. D. Das, Dr. S. Chatterjee, and Mr. P. V. Rajesh, UGC-DAE CSR, Kolkata, Prof. R. K. Kotnala, Dr. Jyoti Shah, NPL, Delhi and Prof. D. Varshney, DAVV, Indore for their valuable discussions, encouragement, and guidance. We acknowledge the funding of DST, Government of India, for providing funds to the PPMS and MPMS facility at CSR India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Kumar Swamy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar Swamy, N., Pavan Kumar, N., Reddy, P.V. et al. Specific heat and magnetocaloric effect studies in multiferroic YMnO3 . J Therm Anal Calorim 119, 1191–1198 (2015). https://doi.org/10.1007/s10973-014-4223-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-014-4223-3

Keywords

Navigation