Skip to main content
Log in

Turbulent forced convection heat transfer and thermophysical properties of Mgo–water nanofluid with consideration of different nanoparticles diameter, an empirical study

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

In the present paper results of an experimental study on thermal conductivity, dynamic viscosity and Nusselt number of turbulent forced convection of Magnesium Oxide–water nanofluid in a circular straight pipe is presented. The considered pertinent parameters are Reynolds number, nanoparticles volume fraction and nanoparticles diameter. The pure water and nanofluid with the nanoparticle volume fraction of 0.005, 0.01, 0.015, 0.02 and the nanoparticles diameter of 60, 50, 40 and 20 nm are considered. The experimental values of the thermal conductivity and the dynamic viscosity shows that traditional formulas underestimates these thermophysical parameters. Also the experimental results indicates that the existence of the nanoparticles in the pure water with all considered values of the nanoparticles volume fraction and diameter motivates the rate of heat transfer to increase. The nanofluids with higher volume fraction and smaller nanoparticles diameter results in higher Nusselt number.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Mintsa HA, Roy G, Nguyen CT, Doucet D. New temperature dependent thermal conductivity data for water-based nanofluids. Int J Therm Sci. 2009;48:363–71.

    Article  CAS  Google Scholar 

  2. Hemmat Esfe M, Saedodin S, Mahian O, Wongwises S. Thermal conductivity of Al2O3/water nanofluids: measurement, correlation, sensitivity analysis, and comparisons with literature reports. J Therm Anal Calorim. 2014;117:675–81.

    Article  CAS  Google Scholar 

  3. Nguyen CT, Desgranges F, Galanis N, Roya G, Maréd T, Boucher S, Mintsa HA. Viscosity data for Al2O3–water nanofluid—hysteresis: is heat transfer enhancement using nanofluids reliable? Int J Therm Sci. 2008;47:103–11.

    Article  CAS  Google Scholar 

  4. Hemmat Esfe M, Saedodin S. An experimental investigation and new correlation of viscosity of ZnO–EG nanofluid at various temperatures and different solid volume fractions. Exp Therm Fluid Sci. 2014;55:1–5.

    Article  CAS  Google Scholar 

  5. Nayak AK, Singh RK, Kulkarni PP. Measurement of Volumetric Thermal Expansion Coefficient of Various Nanofluids. Tech Phys Lett. 2010;36:696–8.

    Article  CAS  Google Scholar 

  6. Kuznetsov AV, Nield DA. Natural convective boundary-layer flow of a nanofluid past a vertical plate. Int J Therm Sci. 2010;49:243–7.

    Article  CAS  Google Scholar 

  7. Wen D, Ding Y. Experimental investigation into convective heat transfer of nanofluids at the entrance region under laminar flow conditions. Int J Heat Mass Transf. 2004;47:5181–8.

    Article  CAS  Google Scholar 

  8. Fotukian SM, Esfahany MN. Experimental investigation of turbulent convective heat transfer of dilute γ-Al2O3/water nanofluid inside a circular tube. Int J Heat Fluid Flow. 2010;31:606–12.

    Article  CAS  Google Scholar 

  9. Pantzali MN, Mouza AA, Paras V. Investigating the efficacy of nanofluids as coolants in plate heat exchangers (PHE). Chem Eng Sci. 2009;64:3290–300.

    Article  CAS  Google Scholar 

  10. Pak BC, Cho Y. Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particle. Exp Heat Transf. 1998;11:151–70.

    Article  CAS  Google Scholar 

  11. Xuan Y, Li Q. Investigation on convective heat transfer and flow features of nanofluids. J Heat Transf. 2003;125:151–5.

    Article  CAS  Google Scholar 

  12. Williams WC, Buongiorno J, Hu LW. Experimental investigation of turbulent convective heat transfer and pressure loss of alumina/water and zirconia/water nanoparticle colloids (nanofluids) in horizontal tubes. J Heat Transf. 2008;130:42412–9.

    Article  Google Scholar 

  13. Duangthongsuk W, Wongwises S. Heat transfer enhancement and pressure drop characteristics of TiO2–water nanofluid in a double-tube counter flow heat exchanger. Int J Heat Mass Transf. 2009;52:2059–67.

    Article  CAS  Google Scholar 

  14. Yu W, France DM, Smith DS, Singh D, Timofeeva EV, Routbort JL. Heat transfer to a silicon carbide/water nanofluid. Int J Heat Mass Transf. 2009;52:3606–12.

    Article  CAS  Google Scholar 

  15. Abbasian Arani AA, Amani J. Experimental study on the effect of TiO2–water nanofluid on heat transfer and pressure drop. Exp Thermal Fluid Sci. 2012;42:107–15.

    Article  CAS  Google Scholar 

  16. Saeedinia M, Akhavan-Behabadi MA, Razi P. Thermal and rheological characteristics of CuO–Base oil nanofluid flow inside a circular tube. Int Commun Heat Mass Transf. 2012;39:152–9.

    Article  CAS  Google Scholar 

  17. Hashemi SM, Akhavan-Behabadi MA. An empirical study on heat transfer and pressure drop characteristics of CuO–base oil nanofluid flow in a horizontal helically coiled tube under constant heat flux. Int Commun Heat Mass Transf. 2012;39:144–51.

    Article  CAS  Google Scholar 

  18. Kayhani MH, Soltanzadeh H, Heyhat MM, Nazari M, Kowsary F. Experimental study of convective heat transfer and pressure drop of TiO2/water nanofluid. Int Commun Heat Mass Transf. 2012;39:456–62.

    Article  CAS  Google Scholar 

  19. Akhavan-Behabadi MA, Pakdaman MF, Ghazvini M. Experimental investigation on the convective heat transfer of nanofluid flow inside vertical helically coiled tubes under uniform wall temperature condition. Int Commun Heat Mass Transf. 2012;39:556–64.

    Article  CAS  Google Scholar 

  20. Pakdaman MF, Akhavan-Behabadi MA, Razi P. An experimental investigation on thermo-physical properties and overall performance of MWCNT/heat transfer oil nanofluid flow inside vertical helically coiled tubes. Exp Thermal Fluid Sci. 2012;40:103–11.

    Article  Google Scholar 

  21. Abbasian Arani AA, Amani J. Experimental investigation of diameter effect on heat transfer performance and pressure drop of TiO2–water nanofluid. Exp Thermal Fluid Sci. 2013;44:520–33.

    Article  CAS  Google Scholar 

  22. Hemmat Esfe M, Saedodin S, Mahmoodi M. Experimental studies on the convective heat transfer performance and thermophysical properties of MgO–water nanofluid under turbulent flow. Exp Thermal Fluid Sci. 2014;52:68–78.

    Article  CAS  Google Scholar 

  23. Incropera FP, De Witt DP. Fundamentals of heat and mass transfer. 4th ed. New York: Wiley; 1996.

    Google Scholar 

  24. Hemmat Esfe M, Saedodin S, Mahian O, Wongwises S. Heat transfer characteristics and pressure drop of low concentrations of COOH- Functionalized DWCNTs/water nanofluid in turbulent flow. Int J Heat Mass Transf. 2014;73:186–94.

    Article  Google Scholar 

  25. Hamilton R, Crosser O. Thermal conductivity of heterogeneous two component systems. Ind Eng Chem Fund. 1962;1(3):187–91.

    Article  CAS  Google Scholar 

  26. Batchelor GK. The Effect of Brownian motion on the bulk stress in a suspension of spherical particles. J.Fluid Mech. 1977;83:97–117.

    Article  Google Scholar 

  27. Gnielinski V. New equations for heat and mass transfer in turbulent pipe and channel flow. Int Chem Eng. 1976;16:359.

    Google Scholar 

  28. Petukhov BS. Heat transfer and friction in turbulent pipe flow with variable physical properties. In: Irvine Jr TF, Hartnett JP, editors. Advances in heat transfer, vol. 6. New York: Academic Press Inc; 1970. p. 504–64.

    Google Scholar 

  29. Maiga SEB, Nguyen CT, Galanis N, Roy G. Heat transfer behaviours of nanofluids in a uniformly heated tube. Superlattice Microst. 2004;35:543–57.

    Article  CAS  Google Scholar 

  30. Colebrook CF. Turbulent flow in pipes, with particular reference to the transition region between smooth and rough pipe laws. J Inst Civ Eng. 1930;150:130–56.

    Google Scholar 

  31. Hemmat Esfe M, Saedodin S, Bahiraei M, Toghraie D, Mahian O, Wongwises S. Thermal conductivity modeling of MgO/EG nanofluids using experimental data and artificial neural network, J Therm Anal Calorim. doi:10.1007/s10973-014-3771-x.

  32. Hemmat Esfe M, Niazi S, Esforjani SSM, Akbari M. Mixed convection flow and heat transfer in a ventilated inclined cavity containing hot obstacles subjected to a nanofluid. Heat Transf Res. 2014;45(4):309–38.

    Article  Google Scholar 

  33. Fereidoon A, Saedodin S, Hemmat Esfe M, Noroozi MJ. Evaluation of mixed convection in inclined square lid driven cavity filled with Al2O3/water nanofluid. Eng Appl Comput Fluid Mech. 2012;7(1):55–65.

    Google Scholar 

  34. Hemmat Esfe M, Saedodin S, Mahian O, Wongwises S. Efficiency of ferromagnetic nanoparticles suspended in ethylene glycol for applications in energy devices: effects of particle size, temperature, and concentration. Int Commun Heat Mass Transf. 2014;58:138–46.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to express their thanks for the assistance provided by the Nano-rheologic Laboratory of Semnan University Science and Technology Park for providing necessary instruments to carry out the sample preparation and helping in analyzing the samples to complete the article in time, and also express their deepest gratitude to Mr. Hafezi Molaei, Marofi and Makki for their supports.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Hemmat Esfe.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hemmat Esfe, M., Saedodin, S. Turbulent forced convection heat transfer and thermophysical properties of Mgo–water nanofluid with consideration of different nanoparticles diameter, an empirical study. J Therm Anal Calorim 119, 1205–1213 (2015). https://doi.org/10.1007/s10973-014-4197-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-014-4197-1

Keywords

Navigation