Skip to main content
Log in

Analysis of TiB2 powders oxidation in the air

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The kinetic parameters of TiB2 powders oxidation of different dispersions were estimated by Coats–Redfern and Ozawa–Flynn–Wall methods. Based on the isoconversional method, it was found that the investigated reaction is most likely of the fractional order and the activation energy E A dependence during the oxidation reaction is of the complicated behavior. Using the Coats–Redfern method the E A values were estimated for four temperature ranges: E A ≅ 300–400 kJ/mol (<750 K, α ≅ 5–7 %), 190 kJ/mol (750–820 K), 75 kJ/mol (820–1,000 K), and E A ≅ 16…26 kJ/mol (1,000–1,400 K) at high α values. A thickness, composition, and microstructure of the scale are changing continuously with temperature (T) increase. These changes lead to the variations of the mechanism of the oxygen diffusion transport to the reaction area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Serebryakova TI, Neronov VA, Peshev PD. Vysokotemperaturnye boridy. Metallurgiya. 1991.

  2. Wank A, Wielage B, Podlesak H, Matthes KJ, Kolbe G. Protection of Ti6Al4V surfaces by laser dispersion of diborides. J Therm Spray Technol. 2005;14(1):134–40.

    Article  CAS  Google Scholar 

  3. Kwon D.-H., Nguyen TD, Huynh KX, Choi P-P, Chang M.-G., Yuma Y-J, Kim J.-S., Kwon Y.-S. Mechanical, electrical and wear properties of Cu-TiB2 nanocomposites fabricated by MA-SHS and SPS. J Ceram Process Res. 2006;7(3):275–9.

    Google Scholar 

  4. Chun CM, Bangaru NRV, Thirumalai N, Peterson JR, Fowler CJ, Antram RL. Erosion–corrosion-resistant titanium diboride cermets for high-temperature process applications. Int J Appl Ceram Technol. 2008;5(6):597–609.

    Article  CAS  Google Scholar 

  5. Ibrahiem MO, Foosnes T, Oye HA. Properties of pitch and furan-based TiB2-C cathodes. Light Met. 2008; 1013–1018.

  6. Li J, Lu X.-J., Lai Y.-Q., Li Q.-Y., Liu Y.-X. Research progress in TiB2 wettable cathode for aluminum reduction. JOM. 2008;8:32–7.

    Article  Google Scholar 

  7. Irving RJ, Worsley IG. The oxidation of titanium diboride and zirconium diboride at high temperatures. J Less Common Met. 1968;16(2):103–12.

    Article  CAS  Google Scholar 

  8. Pilyankevich AN, Papyan SV, Lugovskaya ES. Structurno-morfologicheskie issledovaniz diborida titana pri okislenii v rasnyh sredah. 1. Orislenie diborida titana na vozduhe. Poroshkovaya Metallurgiya. 1982;7:59–63.

    Google Scholar 

  9. Tampieri A, Landi E, Bellosi A. On the oxidation behavior of monolithic TiB2 and Al2O3-TiB2 and Si3N4-TiB2 composites. J Therm Anal. 1992;38:2657–68.

    Article  CAS  Google Scholar 

  10. Voitovich VB, Lavrenko VA, Adejev VM. High-temperature oxidation of titanium diboride of different purity. Oxid Met. 1994;42(1/2):145–61.

    CAS  Google Scholar 

  11. Komratov GN. Kinetics of titanium diboride powders. Powder Metall. 1996;1(2):77–81.

    Google Scholar 

  12. Kulpa A, Troczynski T. Oxidation of TiB2 Powders below 900°C. J Am Ceram Soc. 1996;79(2):518–20.

    Article  CAS  Google Scholar 

  13. Koh Y.-H., Lee S.-Y., Kim H.-E. Oxidation behavior of titanium boride at elevated temperatures. J Am Ceram Soc. 2001;84(1):239–41.

    Article  CAS  Google Scholar 

  14. Parthasarathy TA, Rapp RA, Opeka M, Kerans RJ. A model for the oxidation of ZrB2, HfB2 and TiB2. Acta Mater. 2007;55:5999–6010.

    Article  CAS  Google Scholar 

  15. Shahbahrami B, Bastami H, Shahbahrami N. Studies on oxidation behavior of TiB2 powders. Mater Res Innov. 2010;14(1):107–9.

    Article  CAS  Google Scholar 

  16. Ivanov VV, Chernousov AA, Irtugo LA. Termicheskie processy vzaimodeistvia TiB2 s vozduhom. Ogneupory i Tehnicheskaya keramica. 2012;1–2:9–15.

    Google Scholar 

  17. Brown ME. Introduction to thermal analysis. Techniques and applications. Boston: Kluwer academic publishers; 2001.

    Google Scholar 

  18. NETZSCH Thermokinetics software manual, Trans F Germ., 2007.

  19. Coats AW, Redfern JP. Kinetic parameters from thermogravimetric data. Nature. 1964;201:68–9.

    Article  CAS  Google Scholar 

  20. Vyazovkin S, Clawson JS, Wight CA. Thermal dissociation kinetics of solid and liquid ammonium nitrate. Chem Mater. 2001;13:960–6.

    Article  CAS  Google Scholar 

  21. Sevim F, Demir F, Bilen M, Okur H. Kinetic analysis of thermal decomposition of boric acid from thermogravimetric data. Korean J Chem. 2006;23(5):736–40.

    Article  CAS  Google Scholar 

  22. Moukhina E. Determination of kinetic mechanisms for reactions measured with thermoanalytical instruments. J Therm Anal Calorim. 2012;. doi:10.1007/s10973-012-2406-3.

    Google Scholar 

  23. Ozawa T. Thermal analysis—review and prospect. Thermochim Acta. 2000;355:35–42.

    Article  CAS  Google Scholar 

  24. Ozawa TA. new method of analyzing thermogravimetric data. Bull Chem Soc Japan. 1965;38:1881.

    Article  CAS  Google Scholar 

  25. Flynn JH, Wall LA. General treatment of the termogravimetry of polymers. J Res Nat Bur Stand, Part A. 1966;70:487.

    Article  CAS  Google Scholar 

  26. Fandaruff C, Araya-Sibaja AM, Pereira RN, Hoffmeister CRD, Rocha HVA, Silva MAS. Thermal behavior and decomposition kinetics of efavirenz under isothermal and non-isothermal conditions. J Therm Anal Calorim. 2014;. doi:10.1007/s10973-013-3306-x.

    Google Scholar 

  27. Vyazovkin S, Burnham AK, Criado JM, Perez-Maqueda LA. ICTAC Kinetic Committee recommendations for performing kinetic computations on thermal analysis data. Thermochim Acta. 2011;520:1–19.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The work supported by the Russian Foundation for Basic Research (RFBR) Ref. No. 14-03 31184.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. A. Blokhina.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Blokhina, I.A., Ivanov, V.V. Analysis of TiB2 powders oxidation in the air. J Therm Anal Calorim 119, 123–130 (2015). https://doi.org/10.1007/s10973-014-4196-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-014-4196-2

Keywords

Navigation