Skip to main content
Log in

Using the Friedman method to study the thermal degradation kinetics of photonically cured electrically conductive adhesives

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

In this study, the electrically conductive adhesives were fabricated using vinyl ester resin and micro silver flakes, and then a high-intensity pulsed light was introduced to cure the adhesives under an ambient atmosphere at room temperature. The thermal degradation kinetics of photonically cured products was studied using the Friedman method and deduced by assuming a variable activation energy (E). The value of E spanned from 110 to 233 kJ mol−1, which first increased, then decreased, and finally increased again as the thermal degradation proceeded. The kinetic equation of thermal degradation was obtained as dα/dt = e26.62(1 − α)2.22 α 1.85e(−E(α)/RT) with E(α) = 961.73α 3 − 1453.9α 2 + 669.79α + 79.859, α ∈ (0, 1), where α was the fractional extent conversion at a given time (or given temperature). The overall order of reaction was 4.07 and >1, demonstrating that the thermal degradation was complex. With the Friedman method, a comprehensive and in-depth understanding of the thermal degradation kinetics of photonically cured electrically conductive adhesives has been achieved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Liu J. Conductive adhesives for electronics packaging. Isle of Man: Electrochemical Publications Ltd.; 1999.

    Google Scholar 

  2. Suhir E, Lee YC, Wong CP. Micro- and opto-electronic materials and structures: physics, mechanics, design, reliability, and packaging. New York: Springer; 2007.

    Book  Google Scholar 

  3. Liu J, Salmela O, Sarkka J, Morris JE, Tegehall PE, Andersson C. Reliability of microtechnology: interconnects, devices and systems. New York: Springer; 2011.

    Book  Google Scholar 

  4. Cui HW, Fan Q, Li DS, Tang X. Formulation and characterization of electrically conductive adhesives for electronic package. J Adhes. 2013;89:19–36.

    Article  CAS  Google Scholar 

  5. Cui HW, Du WH. Novel fast curing electrically conductive adhesives from a functional epoxy and micro silver flakes: preparation, characterization, and humid-thermal aging. J Adhes. 2013;89:714–26.

    Article  CAS  Google Scholar 

  6. Cui HW, Li DS, Fan Q. Reliability of flexible electrically conductive adhesives. Polym Adv Technol. 2013;24:114–7.

    Article  CAS  Google Scholar 

  7. Inoue M, Muta H, Yamanaka S, Suganuma K. Electrical properties of isotropic conductive adhesives composed of silicone-based elastomer binders containing Ag particles. J Electron Mater. 2009;38:2013–22.

    Article  CAS  Google Scholar 

  8. Li Z, Hansen K, Yao YG, Ma YQ, Moon KS, Wong CP. The conduction development mechanism of silicone-based electrically conductive adhesives. J Mater Chem C. 2013;1:4368–74.

    Article  CAS  Google Scholar 

  9. Yoonessi M, Scheiman DA, Dittler M, Peck JA, Ilavskye J, Gaierc JR. Meador MA. High-temperature multifunctional magnetoactive nickel graphene polyimide nanocomposites. Polymer. 2013;54:2776–84.

    Article  CAS  Google Scholar 

  10. Zhong XH, Wang R, Wen YY. Effective reinforcement of electrical conductivity and strength of carbon nanotube fibers by silver-paste-liquid infiltration processing. Phys Chem Chem Phys. 2013;15:3861–5.

    Article  CAS  Google Scholar 

  11. Yin Q, Li AJ, Wang WQ, Xia LG, Wang YM. Study on the electrical and mechanical properties of phenol formaldehyde resin/graphite composite for bipolar plate. J Power Sources. 2007;165:717–21.

    Article  CAS  Google Scholar 

  12. Liu NL, Qi SH, Li SS, Wu XM, Wu LM. Preparation and characterization of phenol formaldehyde/Ag/graphite nanosheet composites. Polym Test. 2011;30:390–6.

    Article  CAS  Google Scholar 

  13. Araki T, Nogi M, Suganuma K, Kogure M, Kirihara O. Printable and stretchable conductive wirings comprising silver flakes and elastomer. IEEE Electron Device Lett. 2011;32:1424–6.

    Article  CAS  Google Scholar 

  14. Araki T, Sugahara T, Nogi M, Suganuma K. Effect of void volume and silver loading on strain response of electrical resistance in silver flakes/polyurethane composite for stretchable conductors. Jpn J Appl Phys. 2012;51:11PD01.

    Article  Google Scholar 

  15. Abderrahmen R, Gavory C, Chaussy D, Briançon S, Fessi H, Belgacem MN. Industrial pressure sensitive adhesives suitable for physicochemical microencapsulation. Int J Adhes Adhes. 2011;31:629–33.

    Article  CAS  Google Scholar 

  16. Czech Z, Kowalczyk A, Pełech R, Wróbelb RJ, Shao L, Bai Y, Świdersk J. Using of carbon nanotubes and nano carbon black for electrical conductivity adjustment of pressure-sensitive adhesives. Int J Adhes Adhes. 2012;36:20–4.

    Article  CAS  Google Scholar 

  17. Ho LN, Nishikawa H. Surfactant-free synthesis of copper particles for electrically conductive adhesive applications. J Electron Mater. 2012;41:2527–32.

    Article  CAS  Google Scholar 

  18. Zhu XY, Liu YL, Long JM, Liu XL. Electrochemical migration behavior of Ag-plated Cu-filled electrically conductive adhesives. Rare Met. 2012;31:64–70.

    Article  CAS  Google Scholar 

  19. Tan FT, Qiao XL, Chen JG, Wang HS. Effects of coupling agents on the properties of epoxy-based electrically conductive adhesives. Int J Adhes Adhes. 2006;26:406–13.

    Article  CAS  Google Scholar 

  20. Cui HW, Fan Q, Li DS. Novel flexible electrically conductive adhesives from functional epoxy, flexibilizers, micro silver flakes and nano silver spheres for electronic package. Polym Int. 2013;62:1644–51.

    CAS  Google Scholar 

  21. Yang XJ, He W, Wang SX, Zhou GY, Tang Y. Preparation and properties of a novel electrically conductive adhesive using a composite of silver nanorods, silver nanoparticles, and modified epoxy resin. J Mater Sci-Mater Electron. 2012;23:108–14.

    Article  CAS  Google Scholar 

  22. Si GY, Zhao YH, Lv JT, Lu MQ, Wang FW, Liu HL, Xiang N, Huang TJ, Danner AJ, Teng JH, Liu YJ. Reflective plasmonic color filters based on lithographically patterned silver nanorod arrays. Nanoscale. 2013;5:6243–8.

    Article  CAS  Google Scholar 

  23. Kwon Y, Yim BS, Kim JM, Kim J. Dispersion, hybrid interconnection and heat dissipation properties of functionalized carbon nanotubes in epoxy composites for electrically conductive adhesives (ECAs). Microelectron Reliab. 2011;51:812–8.

    Article  CAS  Google Scholar 

  24. Cui HW, Kowalczyk A, Li DS, Fan Q. High performance electrically conductive adhesives from functional epoxy, micron silver flakes, micron silver spheres and acidified single wall carbon nanotube for electronic package. Int J Adhes Adhes. 2013;44:220–5.

    Article  CAS  Google Scholar 

  25. Cui HW, Li DS, Fan Q. Using a functional epoxy, micron silver flakes, nano silver spheres, and treated single-wall carbon nanotubes to prepare high performance electrically conductive adhesives. Electron Mater Lett. 2013;9:299–307.

    Article  CAS  Google Scholar 

  26. Zhang Y, Qi SH, Wu XM, Duan GC. Electrically conductive adhesive based on acrylate resin filled with silver plating graphite nanosheet. Synth Met. 2011;161:516–22.

    Article  CAS  Google Scholar 

  27. Tang J, Chen Q, Xu LG, Zhang S, Feng LZ, Cheng L, Xu H, Liu Z, Peng R. Graphene oxide-silver nanocomposite as a highly effective antibacterial agent with species-specific mechanisms. ACS Appl Mater Interfaces. 2013;5:3867–74.

    Article  CAS  Google Scholar 

  28. Zhang ZX, Chen XY, Xiao F. The sintering behavior of electrically conductive adhesives filled with surface modified silver nanowires. J Adhes Sci Technol. 2011;25:1465–80.

    Article  CAS  Google Scholar 

  29. Jiu JT, Nogi M, Sugahara T, Tokuno T, Araki T, Komoda N, Suganuma K, Uchida H, Shinozaki K. Strongly adhesive and flexible transparent silver nanowire conductive film fabricated with high-intensity pulsed light technique. J Mater Chem. 2012;22:23561–7.

    Article  CAS  Google Scholar 

  30. Cui HW, Li DS, Fan Q. Using nano hexagonal boron nitride particles and nano cubic silicon carbide particles to improve the thermal conductivity of electrically conductive adhesives. Electron Mater Lett. 2013;9:1–5.

    Article  CAS  Google Scholar 

  31. Cui HW, Li DS, Fan Q, Lai HX. Electrical and mechanical properties of electrically conductive adhesives from epoxy, micro-silver flakes, and nano-hexagonal boron nitride particles after humid and thermal aging. Int J Adhes Adhes. 2013;44:232–6.

    Article  CAS  Google Scholar 

  32. Cui HW, Tang X. Using polyurethane, ethylene-vinyl acetate hotmelt, and nano hexagonal boron nitride particles to electrospin high surface adhesion polymer fibers. Electron Mater Lett. 2014;10:183–9.

    Article  CAS  Google Scholar 

  33. Cui HW, Jiu JT, Nagao S, Sugahara T, Suganuma K, Uchida H, Schroder KA. Ultra-fast photonic curing electrically conductive adhesives from vinyl ester resin and silver flakes. RSC Adv. 2014;4:15914–22.

    Article  CAS  Google Scholar 

  34. Wang XJ, Wu JQ, Li YM, Zhou CJ, Xu CH. Pyrolysis kinetics and pathway of polysiloxane conversion to an amorphous SiOC ceramic. J Therm Anal Calorim. 2014;115:55–62.

    Article  CAS  Google Scholar 

  35. Carmona VB, de Campos A, Marconcini JM, Mattoso LHC. Kinetics of thermal degradation applied to biocomposites with TPS, PCL and sisal fibers by non-isothermal procedures. J Therm Anal Calorim. 2014;115:153–60.

    Article  CAS  Google Scholar 

  36. Kunzel M, Yan QL, Selesovsky J, Zeman S, Matyas R. Thermal behavior and decomposition kinetics of ETN and its mixtures with PETN and RDX. J Therm Anal Calorim. 2014;115:289–99.

    Article  CAS  Google Scholar 

  37. Chandran K, Kamruddin M, Muralidaran P, Ganesan V. Thermal decomposition of sodium propoxides Kinetic studies using model-free method under isothermal and non-isothermal conditions. J Therm Anal Calorim. 2013;112:63–71.

    Article  CAS  Google Scholar 

  38. Mothe CG, de Miranda IC. Study of kinetic parameters of thermal decomposition of bagasse and sugarcane straw using Friedman and Ozawa-Flynn-Wall isoconversional methods. J Therm Anal Calorim. 2013;112:497–505.

    Article  Google Scholar 

  39. Kozlov A, Svishchev D, Donskoy I, Keiko AV. Thermal analysis in numerical thermodynamic modeling of solid fuel conversion. J Therm Anal Calorim. 2012;109:1311–7.

    Article  CAS  Google Scholar 

  40. Nassar NN, Hassan A, Luna G, Pereira-Almao P. Comparative study on thermal cracking of Athabasca bitumen Evaluation of the activation energy and prediction of the isothermal conversion by different isoconversional methods. J Therm Anal Calorim. 2013;114:465–72.

    Article  CAS  Google Scholar 

  41. Galwey AK. Theory of solid-state thermal decomposition reactions. J Therm Anal Calorim. 2012;109:1625–35.

    Article  CAS  Google Scholar 

  42. Kamal MR, Sourour S. Kinetics and thermal characterization of thermoset cure. Polym Eng Sci. 1973;13:59–64.

    Article  CAS  Google Scholar 

  43. Wendlandt WW. Thermal analysis. New York: Wiley-Blackwell; 1986.

    Google Scholar 

  44. Flynn JH. A general differential technique for the determination of parameters for dα/dt = f(α)Aexp(−E/RT). J Therm Anal. 1991;37:293–305.

    Article  CAS  Google Scholar 

  45. Hu RZ, Shi QZ. Thermal analysis kinetics. Beijing: Science Press; 2001.

    Google Scholar 

  46. Cui HW, Jiu JT, Nagao S, Sugahara T, Suganuma K, Uchida H. Using Ozawa method to study the curing kinetics of electrically conductive adhesives. J Therm Anal Calorim. 2014;117:1365–73.

    Article  CAS  Google Scholar 

  47. Han YQ, Li TX, Saito K. A modified Ortega method to evaluate the activation energies of solid state reactions. J Therm Anal Calorim. 2013;112:683–7.

    Article  CAS  Google Scholar 

  48. Gallego J, Batiot-Dupeyat C, Mondragon F. Activation energies and structural changes in carbon nanotubes during different acid treatments. J Therm Anal Calorim. 2013;114:597–602.

    Article  CAS  Google Scholar 

  49. Ortiz-Landeros J, Avalos-Rendon TL, Gomez-Yanez C, Pfeiffer H. Analysis and perspectives concerning CO2 chemisorption on lithium ceramics using thermal analysis. J Therm Anal Calorim. 2012;108:647–55.

    Article  CAS  Google Scholar 

  50. Saad GR, Eldin AFS. Isothermal cure kinetics of uncatalyzed and catalyzed diglycidyl ether of bisphenol-A/carboxylated polyester hybrid powder coating. J Therm Anal Calorim. 2012;110:1425–30.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui-Wang Cui.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cui, HW., Jiu, JT., Sugahara, T. et al. Using the Friedman method to study the thermal degradation kinetics of photonically cured electrically conductive adhesives. J Therm Anal Calorim 119, 425–433 (2015). https://doi.org/10.1007/s10973-014-4195-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-014-4195-3

Keywords

Navigation