Skip to main content
Log in

Preparation and characterization of Pt-dealuminated Y zeolite by TG/DTA and TPR

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Monometallic catalysts containing Pt supported on dealuminated Y zeolite were prepared by impregnation with a solution containing H2PtCl6·6H2O cationic complexes. The catalysts were calcined and characterized by X-ray fluorescence (XRF), X-ray diffraction (XRD), simultaneous thermogravimetry/differential thermal analysis (TG/DTA), temperature programmed reduction, physisorption of nitrogen, scanning electron microscopy (SEM), transmission electron microscopy (TEM), and energy dispersive X-ray spectroscopy (EDX). The XRD results showed that zeolite Y maintained its crystalline structure throughout the dealumination and metal incorporation processes. However, the relative crystallinity of the various samples was reduced upon impregnation. Furthermore, the XRD diffractograms, the SEM and TEM micrographs, and EDX spectra for the impregnated samples presented evidence for the presence of Pt oxides. The adsorption isotherms of the nitrogen physisorption showed the existence of micropores and mesopores within the Pt/Y zeolite. Temperature programmed reduction profiles suggest that the reduction temperature of Pt depends on the location of the metal within the zeolitic structure. The reduction peaks can be attributed to cations located in the large cavities, sodalite cages, or hexagonal prisms. The TG/DTA analyses showed the endothermic decomposition of the Pt complexes deposited on the zeolite during impregnation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Le Van Mao R, Saberi MA. Catalysts for the hydroisomerization of n-heptane, prepared according to the concept of ‘triangular’ site configuration (acid/metal/desorption-transfer promoting sites). Appl Catal A. 2000;199:99–107. doi:10.1016/S0926-860X(99)00557-8.

    Article  CAS  Google Scholar 

  2. Park K, Ihm S. Comparison of Pt/zeolite catalysts for n-hexadecane hydroisomerization. Appl Catal A. 2000;203:201–9. doi:10.1016/S0926-860X(00)00490-7.

    Article  CAS  Google Scholar 

  3. Thybaut J, Narasimhan CS, Denayer J, Baron G, Pierre J, Martens JA, Marin G. Acid–metal balance of a hydrocracking catalyst: ideal versus nonideal behavior. Ind Eng Chem Res. 2005;44:5159–69. doi:10.1021/ie049375.

    Article  CAS  Google Scholar 

  4. Yasuda H, Yoshimura Y. Hydrogenation of tetralin over zeolite-supported Pd–Pt catalysts in the presence of dibenzothiophene. Catal Lett. 1997;46:43–8.

    Article  CAS  Google Scholar 

  5. Jin WY, Yang OB, Woo SI. Decane reforming reaction over Pt, Ir, Pt–Ir and Pt–Ni bimetallic catalysts supported on y-zeolite. Korean J Chem Eng. 1996;13(4):351–5.

    Article  CAS  Google Scholar 

  6. Sinfelt JH. Catalysis by alloys and bimetallic clusters. Acc Chem Res. 1977;10:15–20. doi:10.1021/ar50109a003.

    Article  CAS  Google Scholar 

  7. Rahimpour M, Jafari M, Iranshahi D. Progress in catalytic naphtha reforming process: a review. Appl Energy. 2013;109:79–93.

    Article  CAS  Google Scholar 

  8. Giannetto GP, Perot G, Guisnet M. Zeolites: synthesis structure, technology and application. Stud Surf Sci Catal. 1985;24:631–8.

    Article  CAS  Google Scholar 

  9. Bushuev Y, Sastre G, Julian-Ortiz JV, Galvez J. Water-Hydrophobic zeolite systems. J Phys Chem C. 2012;116(47):24916–29.

    Article  CAS  Google Scholar 

  10. Díaz U, Fornés V, Corma A. On the mechanism of zeolite growing: crystallization by seeding with delayered zeolites. Microporous Mesoporous Mater. 2006;90:73–80.

    Article  Google Scholar 

  11. http://www.iza-structure.org/databases/. Accessed 09 Feb 2014.

  12. Breck DW. Zeolite molecular sieves, structure, chemistry and use. New York, London, Sydney, Toronto: Wiley; 1974.

    Google Scholar 

  13. Borges L, Moura N, Costa A, Braga P, Dias J, Dias S, de Macedo J, Ghesti G. Investigation of biodiesel production by HUSY and Ce/HUSY zeolites: Influence of structural and acidity parameters. Appl Catal A. 2013;450:114–9.

    Article  CAS  Google Scholar 

  14. Katikaneni SPR, Adjaye JD, Bakhshi NN. Studies on the catalytic conversion of canola oil to hydrocarbons: influence of hybrid catalysts and steam. Energy Fuels. 1995;9:599–609.

    Article  CAS  Google Scholar 

  15. Corma A. Zeolites in oil refining and petrochemistry. Zeolite microporous solids: synthesis, structure and reactivity. NATO ASI Ser., Ser. C. 1992;352:373–436.

    CAS  Google Scholar 

  16. Dandik L, Aksoy HA, Erdem-Senatalar A. Catalytic conversion of used oil to hydrocarbon fuels in a fractionating pyrolysis reactor. Energy Fuels. 1998;12(6):1148.

    Article  CAS  Google Scholar 

  17. Sternik D, Staszczuk P, Majdan M, Gladysz-Plaska A, Dlbrowska E, Bigda K. Studies of physico-chemical properties of mixed adsorbent in the Zeolite/SiO2 system. J Therm Anal Calorim. 2006;86(1):69–75.

    Article  CAS  Google Scholar 

  18. Triantafillidis CS, Vlessidis AG, Nalbandian L, Evmiridis NP. Effect of the degree and type of the dealumination method on the structural, compositional and acidic characteristics of HZSM-5 Zeolites. Microporous Mesoporous Mater. 2001;47:369–88.

    Article  CAS  Google Scholar 

  19. Muller M, Harvey G, Prins R. Comparison of the dealumination of Zeolites Beta, Mordenite, ZSM-5 and Ferrierite by thermal treatment, leaching with oxalic acid and treatment with SiCl4 by 1H,29Si and 27Al MAS NMR. Microporous Mesoporous Mater. 2000;34:135–47.

    Article  CAS  Google Scholar 

  20. Kooyman PJ, Van Der Waal P, Bekkum HV. Acid dealumination of ZSM-5. Zeolites. 1997;18:50–3.

    Article  CAS  Google Scholar 

  21. Ward WJ. The nature of active sites on zeolites I. The decationated Y zeolite. J Catal. 1967;9:225–36. doi:10.1016/0021-9517(67)90248-5.

    Article  CAS  Google Scholar 

  22. De la Puente G, Sedran U. Influence of dealumination on the micropore adsorption in FCC catalysts. Microporous Mater. 1997;12:251–60.

    Article  Google Scholar 

  23. Groen CJ, Peffer L, Moulijn JA, Perez-Ramirez J. Mesoporosity development in ZSM-5 zeolite upon optimized desilication conditions in alkaline medium. Colloids Surf A. 2004;24:153–8.

    Google Scholar 

  24. You S, Park E. Effects of dealumination and desilication of H-ZSM-5 on xylose dehydration. Microporous Mesoporous Mater. 2014;186:121–9.

    Article  CAS  Google Scholar 

  25. Hanafi A, Gobara H, Elmelawy M, Abo-El-Enein A, Alkahlawy A. Catalytic behavior of Pt nanoparticles dealuminated Y-zeolite for some n-alkane hydroisomerization. Egypt J Pet. 2014;23:151–61. doi:10.1016/j.ejpe.2014.05.001.

    Article  Google Scholar 

  26. Talebia G, Sohrabi M, Keiskib LR, Huuhtanenb M, Royaeea SJ, Maghsoudic S, Imamverdizadeha H. Synthesis and determination of the properties of the bifunctional beta zeolite catalysts for n-heptane hydroisomerization. J Chil Chem Soc. 2008;53(1):1424–30.

    Google Scholar 

  27. Alam N, Mokaya R. Characterisation and hydrogen storage of Pt doped carbons template by Pt exchanged zeolite Y. Microporous Mesoporous Mater. 2011;142:716–24. doi:10.1016/j.micromeso.2011.01.024.

    Article  CAS  Google Scholar 

  28. Denayer J, Ocakoglu R, Huybrechts W, Dejonckheere B, Jacobs P, Calero S, Krishna R, Smit B, Baron G, Martens J. High-pressure liquid phase hydroconversion of heptane/nonane mixtures on Pr/H-Y zeolite catalyst. J Catal. 2003;220(1):66–73. doi:10.1016/S0021-9517(03)00239-2.

    Article  CAS  Google Scholar 

  29. Reyniers M, Marin G. Experimental and theoretical methods in kinetic studies of heterogeneously catalyzed reactions. Annu Rev Chem Biomol Eng. 2014;5:563–94. doi:10.1146/annurev-chembioeng-060713-040032.

    Article  CAS  Google Scholar 

  30. Primera-Pedrozo J, Torres-Cosme B, Clardy M, Rivera-Ramos M, Hernandez-Maldonado A. Titanium silicate porous materials for carbon dioxide adsorption: synthesis using a structure directing agent, detemplation and inclusion of alkaline earth metal cations. Ind Eng Chem Res. 2010;49:7515–23. doi:10.1021/ie100331q.

    Article  CAS  Google Scholar 

  31. Ruey-Shin J, Hsiang-Chien K, Fong-Yi L. Ion exchange recovery of Ni(II) from simulated electroplating waste solutions containing anionic ligands. J Hazard Mater. 2006;B128:53–9.

    Article  Google Scholar 

  32. Martins L, Toloni BR, Cardoso D. Ion exchange and catalytic properties of methylammonium FAU Zeolite. Microporous Mesoporous Mater. 2007;98:166–73.

    Article  CAS  Google Scholar 

  33. Scherzer J. The preparation and characterization of aluminum-deficient zeolites. In: Whyte Jr, Dalla Betta TE, Derouane E, Baker RTK, editors. Catalytic materials: relationship between structure and reactivity. Washington, DC: ACS; 1984. doi:10.1021/bk-1984-0248.ch010.

  34. Nováková J, Kubelková L, Habersberger K, Dolejsek Z. Catalytic activity of dealuminated Y and HZSM-5 zeolites measured by the temperature-programmed desorption of small amounts of preadsorbed methanol and by the low-pressure flow reaction of methanol. J Chem Soc Faraday Trans. 1984;80:1457–65. doi:10.1039/F1988001457.

    Article  Google Scholar 

  35. Giannetto G, Alvarez F, Ribeiro FR, Pérot G, Guisnet M. Hydroisomerization and hydrocracking of alkanes. influence of the pore structure on the selectivity of Pt-zeolite. In: Barthomeuf D, Derouane E, Holderich W, editors. Guidelines for mastering the properties of molecular sieves. Relationship between the physicochemical properties of zeolytic systems and their low dimensionality. NATO ASI Series, vol. 221. New York: Plenum Publishing Corporation; 1990. p. 355–363. ISBN:978-1-4684-5789-6 (Print) 978-1-4684-5787-2 (Online).

  36. Cavalcanti LC Jr, Silva M, Sousa-Aguiar EF, Sobrinho E. Diffusion of paraffins in dealuminated Y mesoporous molecular sieves. Adsorption. 2003;9:205–12.

    Article  Google Scholar 

  37. Joyner R. Extended X-ray absorption fine structure (EXAFS) studies of highly dispersed platinum catalysts. J Chem Soc Faraday Trans. 1980;1(76):357–61. doi:10.1039/F19807600357.

    Article  Google Scholar 

  38. Weller S, Montagna A. O2 chemisorption at high temperatures on platinum-alumina and platinum-zeolite. J Catal. 1971;20:394–407. doi:10.1016/0021-9517(71)90102-3.

    Article  CAS  Google Scholar 

  39. Lieske H, Lietz G, Spindler H, Volteri J. Reactions of platinum in oxygen- and hydrogen-treated Pt/ɤ-A1203 catalysts I. Temperature-programmed reduction, adsorption, and redispersion of platinum. J Catal. 1983;81(1):8–16. doi:10.1016/0021-9517(83)90142-2.

  40. Barbier J, Bahloul D, Marecot P. Effect of chloride on sintering of Pt/Al2O3. Catal Lett. 1991;8:327–34.

    Article  CAS  Google Scholar 

  41. Jordão M, Simões V, Cardoso D. Zeolite supported Pt-Ni catalysts in n-hexane isomerization. Appl Catal A. 2007;319:1–6. doi:10.1016/j.apcata.2006.09.039.

    Article  Google Scholar 

  42. Wagstaff N, Prins R. Alloy formation and metal oxide segregation in Pt-Re/γ-Al2O3 catalysts as investigated by temperature-programmed reduction. J Catal. 1979;59(3):434–45. doi:10.1016/S0021-9517(79)80012-3.

    Article  CAS  Google Scholar 

  43. Wagstaff N, Prins R. Reply to interpretation of temperature-programmed reduction (TPR) experiments of platinum–iridium catalysts. J Catal. 1981;67:255–6. doi:10.1016/0021-9517(81)90283-9.

    Article  CAS  Google Scholar 

  44. Moretti G, Sachtler WMH. Geometric causes of the methylcyclopentane ring opening selectivity over Pt/NaY catalysts. J Catal. 1989;116:350.

    Article  CAS  Google Scholar 

  45. Pedrosa AMG, Souza MJB, Melo DMA, Souza AG, Araújo AS. Determination of surface properties of nickel supported on HY zeolite by TG, DTA and TPR. J Therm Anal Calorim. 2005;79:439–43. doi:10.1007/s10973-005-0081-3.

    Article  CAS  Google Scholar 

  46. Domine ME, Hernandez-Soto MC, Navarro MT, Perez Y. Pt and Pd nanoparticles supported on structured materials as catalysts for the selective reductive amination of carbonyl compounds. Catal Today. 2011;172:13–20. doi:10.1016/j.cattod.2011.05.013.

    Article  CAS  Google Scholar 

  47. Hernandez J, Choren E. Thermal stability of some platinum complexes. Thermochim Acta. 1983;71:265–72. doi:10.1016/0040-6031(83)80059-8.

    Article  CAS  Google Scholar 

  48. Pedrosa AMG, Souza MJB, Lima SH, Melo DMA, Araújo AS. Influence of the synthesis method on the DTG-TPR profiles of Pt/WOx–ZrO2 bifunctional catalysts. J Therm Anal Calorim. 2007;87(3):703–7. doi:10.1007/s10973-006-7777-x.

    Article  Google Scholar 

  49. Sousa B, Brito K, Alves J, Rodrigues M, Yoshioka C, Cardoso D. n-Hexane isomerization on Pt/HMOR: effect of Platinum contente. React Kinet Mech Catal. 2011;102:473–85. doi:10.1007/s11144-010-0273-0.

    Article  CAS  Google Scholar 

  50. Hurst NW, Gentry SJ, Jones A. Temperature programmed reduction. Catal Rev Sci Eng. 1982;24(2):233–309.

    Article  CAS  Google Scholar 

  51. Makowski W, Mlekodaj KM. Characterization of acidic zeolite catalysts by thermodesorption and cracking of n-nonane. Microporous Mesoporous Mater. 2013;166:137–43. doi:10.1016/j.micromeso.2012.04.034.

    Article  CAS  Google Scholar 

  52. Verheyen E, Jo Ch, Kurttepeli M, Vanbutsele G, Gobechiya E, Korányi TI, Bals S, Tendeloo GV, Ryoo R, Kirschhock C, Martens JA. Molecular shape-selectivity of MFI zeolite nanosheets in n-decane isomerization and hydrocracking. J Catal. 2013;300:70–80. doi:10.1016/j.jcat.2012.12.017.

  53. Aboul-Gheit A, Aboul-Fotouh Sameh M. Insight in cyclohexene hydroconversion process using catalysts containing 0.35 % Pt on amorphous and zeolite supports. J Taiwan Inst Chem Eng. 2012;43:711–717. doi:10.1016/j.jtice.2012.03.007.

  54. Brunauer S, Emmett PH, Teller E. Adsorption of gases in multimolecular layers. J Am Chem Soc. 1938;60:309–19.

    Article  CAS  Google Scholar 

  55. Janssen A, Koster A, Jong K. Three-dimensional transmission electron microscopic observations of mesopores in dealuminated zeolite Y. Angew Chem Int Ed. 2001;40(6):1102–4.

    Article  CAS  Google Scholar 

  56. Jong K, Zecevic J, Friedrich H, Jongh P, Bulut M, Van Donk S, Kenmogne R, Finiels A, Hulea V, Fajula F. Zeolite Y crystals with trimodal porosity as ideal hydrocracking catalysts. Angew Chem Int Ed. 2010;122:10272–6. doi:10.1002/anie.201004360.

    Article  Google Scholar 

  57. Jeanjean J, Aouali L, Delafosse D, Dereigne A. Crystal structure of different dealuminated Y-type zeolites determination of framework vacancies and non-framework species. J Chem Soc Faraday Trans. 1989;1F(85):2771–83. doi:10.1039/F19898502771.

    Article  Google Scholar 

Download references

Acknowledgements

Programa Nacional de Cooperação Acadêmica—Coordenação de Aperfeiçoamento de Pessoal de Nível Superior 083/2009, Auxilio Financeiro a Projeto de Pesquisa 762/2010, Rede de Catálises Norte/Nordeste III, Conselho Nacional de Desenvolvimento Científico e Tecnológico, OAS Partnership Program for Education and Training PAEC-GCUB for the financial support to carry out this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Montoya Urbina.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vieira dos Santos, B.R., Montoya Urbina, M., Souza, M.J.B. et al. Preparation and characterization of Pt-dealuminated Y zeolite by TG/DTA and TPR. J Therm Anal Calorim 119, 391–399 (2015). https://doi.org/10.1007/s10973-014-4183-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-014-4183-7

Keywords

Navigation