Skip to main content
Log in

Rapid calcination of ferrite Ni0.75Zn0.25Fe2O4 by microwave energy

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Ferrites Ni0.75Zn0.25Fe2O4 were obtained by polymeric precursor method and calcined in a short time with microwave energy to assess the morphological and microstructural characteristics. Samples were calcined at 500, 650, 800, and 950 °C for 30 min in a microwave oven. The resulting powders were characterized by thermal analysis (TG/DSC), X-ray diffraction (XRD), Fourier transform infrared spectrometer, field-emission gun scanning electron microscope (FEG-SEM), and energy-dispersive X-ray spectroscopy. The XRD results showed the formation of single ferrite phase at temperature of 500 °C for 30 min. The FEG-SEM analysis showed agglomerated particles with formation of non-dense longitudinal plates, with interparticle porosity and agglomerated fine particles. The rapid calcination by microwave energy demonstrated satisfactory results in relatively low temperature of 500 °C for 30 min and appeared to be a promising technique for obtaining nickel–zinc ferrite powders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Thomas JJ, Shinde AB, Krishna PSR, Kalarikkal N. Cation distribution and micro level magnetic alignments in the nanosized nickel zinc ferrite. J Alloy Compd. 2013;546:77–83.

    Article  CAS  Google Scholar 

  2. Costa ACFM, Tortella E, Morelli MR, Kiminami RHGA. Synthesis, microstructure and magnetic properties of Ni–Zn ferrites. J Magn Magn Mater. 2003;256:174–82.

    Article  CAS  Google Scholar 

  3. Chen WS, Chang YL, Hsiang HI, Hsu FC, Yen FS. Effects of titanate coupling agent on the dielectric properties of NiZn ferrite powders–epoxy resin coatings. Ceram Int. 2011;37:2347–52.

    Article  CAS  Google Scholar 

  4. Gawas UB, Verenkar VMS, Mojumdar SC. Nano-crystalline Mn0.3Ni0.3Zn0.4Fe2O4 obtained by novel fumarato-hydrazinate precursor method: Synthesis, characterization and studies of magnetic and electrical properties. J Therm Anal Calorim. 2012;108:865–70.

    Article  CAS  Google Scholar 

  5. Pawar DK, Pawar SM, Patil PS, Kolekar SS. Synthesis of nanocrystalline nickel–zinc ferrite (Ni0.8Zn0.2Fe2O4) thin films by chemical bath deposition method. J Alloy Compd. 2011;509:3587–91.

    Article  CAS  Google Scholar 

  6. Moeen SJ, Vaezi MR, Yousefi AA. Chemical synthesis of nano-crystalline nickel-zinc ferrite as a magnetic pigment. Prog Color Colorants Coat. 2010;3:9–17.

    Google Scholar 

  7. Sarangi PP, Vadera SR, Patra MK, Ghosh NN. Synthesis and characterization of pure single phase Ni–Zn ferrite nanopowders by oxalate based precursor method. Powder Technol. 2010;203:348–53.

    Article  CAS  Google Scholar 

  8. Szczygieł I, Winiarska K. Synthesis and characterization of manganese–zinc ferrite obtained by thermal decomposition from organic precursors. J Therm Anal Calorim. 2014;115:471–7.

    Article  Google Scholar 

  9. Shahane GS, Kumar A, Arora M, Pant RP, Lal K. Synthesis and characterization of Ni–Zn ferrite nanoparticles. J Magn Magn Mater. 2010;322:1015–9.

    Article  CAS  Google Scholar 

  10. Kumar A, Singh A, Yadav MS, Arora M, Pant RP. Finite size effect on Ni doped nanocrystalline NixZn1−xFe2O4 (0.1 ≤ x ≤ 0.5). Thin Solid Films. 2010;519:1056–8.

    Article  CAS  Google Scholar 

  11. Kothawale MM, Tangsali RB, Naik GK, Budkuley JS. Characterization and magnetic properties of nanoparticle Ni1−x Zn x Fe2O4 ferrites prepared using microwave assisted combustion method. J Supercond Nov Magn. 2012;25:1907–11.

    Article  CAS  Google Scholar 

  12. Junliang L, Zhang W, Cuijing G, Yanwei Z. Synthesis and magnetic properties of quasi-single domain M-type barium hexaferrite powders via sol–gel auto-combustion: Effects of pH and the ratio of citric acid to metal ions (CA/M). J Alloy Compd. 2009;479:863–9.

    Article  Google Scholar 

  13. Rahimi M, Kameli P, Ranjbar M, Hajihashemi H, Salamati H. The effect of zinc doping on the structural and magnetic properties of Ni1-xZnxFe2O4. J Mater Sci. 2013;48:2969–76.

    Article  CAS  Google Scholar 

  14. Lazarevic ZZ, Vijatovic M, Dohcevi-Mitrovic Z, Romcevie NZ, Romcevic MJ, Paunovic N, Stojanovic BD. The characterization of the barium titanate ceramic powders prepared by the Pechini type reaction route and mechanically assisted synthesis. J Eur Ceram Soc. 2009;30:623–8.

    Article  Google Scholar 

  15. Lessing PA. Mixed-cation oxide powders via polymeric precursors. Am Ceram Soc Bull. 1989;68:1002–7.

    CAS  Google Scholar 

  16. Nono MCA. Compaction behavior study of powder composed by nanoparticles agglomerates and aggregates. Mater Sci Forum. 2006;530:461–6.

    Article  Google Scholar 

  17. Oghbaei M, Mirzaee O. Microwave versus conventional sintering: a review of fundamentals, advantages and applications. J Alloy Compd. 2010;494:175–80.

    Article  CAS  Google Scholar 

  18. Katz JD. Microwave sintering of ceramics. J Mater Sci. 1992;22:153–70.

    CAS  Google Scholar 

  19. Ibrahim AM, Abd El-Latif MM, Mahmoud MM. Synthesis and characterization of nano-sized cobalt ferrite prepared via polyol method using conventional and microwave heating techniques. J Alloy Compd. 2010;506:201–4.

    Article  CAS  Google Scholar 

  20. Clark DE, Folz DC, Folgar CE, Mahmoud MM. Microwave solutions for ceramic engineers. Westerville: American Ceramic Society; 2005.

    Google Scholar 

  21. Michael D, Mingos P, Baghurst DR. Applications of microwave dielectric heating effects to synthetic problems in chemistry. Chem Soc Rev. 1991;20:1–47.

    Article  Google Scholar 

  22. Sertkol M, Koseo˘glu Y, Baykal A, Kavas H, Bozkurt A, Toprak MS. Microwave synthesis and characterization of Zn-doped nickel ferrite nanoparticles. J Alloy Compd. 2009;486:325–9.

    Article  CAS  Google Scholar 

  23. Tangcharoen T, Ruangphanit A, Pecharapa W. Structural and magnetic properties of nanocrystalline zinc-doped metal ferrites (metal = Ni; Mn; Cu) prepared by sol–gel combustion method. Ceram Int. 2013;39:S239–43.

    Article  CAS  Google Scholar 

  24. Suryanarayanan C, Norton MG. X-ray diffraction: a practical approach. 1st ed. New York: Plenum Press; 1998.

    Book  Google Scholar 

  25. Holland TJB, Redfem SAT. Unit cell refinement from powder diffraction data: the use of regression diagnostics. Miner Mag. 1997;61:65–77.

    Article  CAS  Google Scholar 

  26. Kambale RC, Adhate NR, Chougule BK, Kolekar YD. Magnetic and dielectric properties of mixed spinel Ni–Zn ferrites synthesized by citrate–nitrate combustion method. J Alloy Compd. 2010;491:372–7.

    Article  CAS  Google Scholar 

  27. Iqbal MA, Islam M, Ali I, Khan HM, Mustafa G, Ali I. Study of electrical transport properties of Eu+3 substituted MnZn-ferrites synthesized by co-precipitation technique. Ceram Int. 2013;39:1539–45.

    Article  Google Scholar 

  28. Stefanescu O, Vlase G, Barbu M, Barvinschi P, Stefanescu M. Preparation of CuFe2O4/SiO2 nanocomposite starting from Cu(II)–Fe(III) carboxylates embedded in hybrid silica gels. J Therm Anal Calorim. 2013;113:1245–53.

    Article  CAS  Google Scholar 

  29. Lide DR. Handbook of chemistry and physics, 74ª ed., 1994.

  30. Al-Alas AA, Beg S, Al-Areqi NAS, Hafeez S. Influence of microwave-assisted calcination on structural properties and oxide-ion performance of layered - perovskite γ - BIMNVOX solid electrolyte synthesized by ethylene glycol–citrate sol–gel route. J Eur Ceram Soc. 2013;33:2111–7.

    Article  CAS  Google Scholar 

  31. Mouallem-Bahout M, Bertrand S, Peña O. Synthesis and characterization of Zn1-xNixFe2O4 spinels prepared by a citrate precursor. J Solid State Chem. 2005;178:1080–6.

    Article  CAS  Google Scholar 

  32. Saba A, Elsayed E, Moharam M, Rashad MM. Electrochemical synthesis of nanocrystalline Ni0.5Zn0.5Fe2O4 thin film from aqueous sulfate bath. ISRN Nanotechnology. 2012; 8 pages.

  33. Angermann A, Töpfer J. Synthesis of nanocrystalline Mn–Zn ferrite powders through thermolysis of mixed oxalates. Ceram Int. 2011;37:995–1002.

    Article  CAS  Google Scholar 

  34. Liang X, Zhong Y, Tan W, Zhu J, Yuan P, He H, Jiang Z. The influence of substituting metals (Ti, V, Cr, Mn, Co and Ni) on the thermal stability of magnetite. J Therm Anal Calorim. 2013;111:1317–24.

    Article  CAS  Google Scholar 

  35. Kingery WD, Bower HK, Uhlmann DR. Introduction to ceramics. New York: John Wiley & Sons; 1976.

    Google Scholar 

  36. Ruiz MS, Bercoff PG, Jacobo SE. Shielding properties of CuNiZn ferrite in the radio frequency range. Ceram Int. 2013;39:4777–82.

    Article  CAS  Google Scholar 

  37. Šutka A, Mežinskis G, Timma L, Vītiņa I, Plūdons A. Electrical and structural properties of nanostructured stoichiometric and non-stoichiometric Ni-Zn ferrites. 5th Baltic Conference on Silicate Materials: Book of Abstracts, Latvia, Rīga. 2011;23–25:34–35.

  38. Chen S, Chang SC, Lin IN. The influence of grain boundary internal stress on permeability: temperature curve for Mn-Zn ferrites. J Magn Magn. 2000;209:193–6.

    Article  CAS  Google Scholar 

  39. Byeon SC, Hong KS, Je HJ. Oxygen partial pressure dependent magnetic properties of manganese-zinc ferrite polycrystals. Mater Res Bull. 1997;32:579–88.

    Article  CAS  Google Scholar 

  40. Dias A, Mohallem NDS, Moreira RL. Solid-state sintering of hydrothermal powders: densification and grain growth kinetics of nickel–zinc ferrites. Mater Res Bull. 1998;33:475–86.

    Article  CAS  Google Scholar 

  41. Kedesky, Katz., Ceramic Age. 1953;62:29.

  42. Olhero SM, Soma D, Amaral VS, Button TW, Alves FJ, Ferreira JMF. Co-precipitation of a Ni–Zn ferrite precursor powder: Effects of heat treatment conditions and deagglomeration on the structure and magnetic properties. J Eur Ceram Soc. 2012;32:2469–76.

    Article  CAS  Google Scholar 

  43. Zhang M, Liu QC, Zi ZF, Dai YQ, Zhu XB, Sun YP, Dai JM. Magnetic and microwave absorption properties of Ni1-x Zn x Fe2O4 nanocrystalline synthesized by sol-gel method. Sci China Tech. 2013;56:13–9.

    Article  Google Scholar 

  44. Singh RK, Yadav A, Narayan A, Singh AK, Verma L, Verma RK. Thermal, structural and magnetic studies on chromite spinel synthesized using citrate precursor method and annealed at 450 and 650 C. J Therm Anal Calorim. 2012;107:197–204.

    Article  CAS  Google Scholar 

  45. Wu W, Li Y, Zhou K, Wu X, Liao S, Wang Q. Nanocrystalline Zn0.5Ni0.5Fe2O4: preparation and kinetics of thermal process of precursor. J Therm Anal Calorim. 2012;110:1143–51.

    Article  CAS  Google Scholar 

  46. Jiang C, Liu R, Shen X, Zhu L, Song F. Ni0.5Zn0.5Fe2O4 nanoparticles and their magnetic properties and adsorption of bovine serum albumin. Powder Technol. 2011;211:90–4.

    Article  CAS  Google Scholar 

  47. Hwang DJ, Ryu JY, Park JH, Yu YH, Lee SK, Cho KH, Han C, Lee JD. Calcination of mega-crystalline calcite using microwave and electric furnaces. J Ind Eng Chem. 2012;18:1956–63.

    Article  CAS  Google Scholar 

  48. Stoia M, Barvinschi P, Tudoran LB, Barbu M, Stefanescu M. Synthesis of nanocrystalline nickel ferrite by thermal decomposition of organic precursors. J Therm Anal Calorim. 2012;108:1033–9.

    Article  CAS  Google Scholar 

  49. Durrani SK, Naz S, Nadeem M, Khan AA. Thermal, structural, and impedance analysis of nanocrystalline magnesium chromite spinel synthesized via hydrothermal process. J Therm Anal Calorim. 2014;116:309–20.

    Article  CAS  Google Scholar 

  50. Ramanayaka AN, Ye T, Liu HC, Wegscheider W, Mani RG. Interaction of microwave radiation with the high mobility two-dimensional electron system in GaAs/AlGaAs heterostructures. Phys Rev B. 2014;. doi:10.1016/j.physb.2014.03.064.

    Google Scholar 

  51. Zhou Z, Wang Z, Wang X, Wang X, Zhang J, Dou F, Jin M, Xu J. Differences in the structure and magnetic properties of Sr1-xRExFe12O19 (RE: Pr and Dy) ferrites by microwave-assisted synthesis method. J Alloy Compd. 2014;610:264–720.

    Article  CAS  Google Scholar 

  52. Reddy MP, Balakrishnaiah G, Madhuri W, Ramana MV, Reddy NR, Kumar KVS, Murthy VRK, Reddy RR. Structural, magnetic and electrical properties of NiCuZn ferrites prepared by microwave sintering method suitable for MLCI applications. J Phys Chem Solids. 2010;71:1373–80.

    Article  Google Scholar 

  53. Paulsen JA, Lo CCH, Snyder JE, Ring AP, Jones LL, Jiles DC. Study of the Curie temperature of cobalt ferrite based composites for stress sensor applications. IEEE Trans Magn. 2003;39:3316–8.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the financial support of the Brazilian research financing institutions: CNPq, CAPES and FAPESP-CDMF 2013/07296-2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. B. Assis.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Assis, R.B., Bomio, M.R.D., Nascimento, R.M. et al. Rapid calcination of ferrite Ni0.75Zn0.25Fe2O4 by microwave energy. J Therm Anal Calorim 118, 277–285 (2014). https://doi.org/10.1007/s10973-014-4011-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-014-4011-0

Keywords

Navigation