Skip to main content
Log in

Unified isothermal and non-isothermal modelling of neat PEEK crystallization

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

A differential generalized Avrami’s law is used to model crystallization kinetic of PEEK in considering that PEEK crystallization results from the contribution of two distinct mechanisms. The form of this equation allows to predict with good accuracy both isothermal and non-isothermal crystallization kinetics. Nevertheless, isothermal model parameters are not entirely satisfactory for predicting non-isothermal crystallization and the identification of kinetic parameters is needed for both isothermal and non-isothermal cases. The results show that the Avrami exponents and Arrhenius activation energies remain constant for both conditions and therefore suggest that these parameters are only material dependent. On the other hand, the other kinetic parameters depend on the crystallization condition and vary with temperature and/or cooling rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Gao SL, Kim JK. Cooling rate influences in carbon fibre/PEEK composites. Part 1. Crystallinity and interface adhesion. Comp Part A. 2000;31:517–30.

    Article  Google Scholar 

  2. Gao SL, Kim JK. Cooling rate influences in carbon fibre/PEEK composites. Part III: Impact damage performance. Comp Part A. 2001;32:775–85.

    Article  Google Scholar 

  3. Rudolf R, Mitschang P, Neitzel M. Induction heating of continuous carbon-fibre-reinforced thermoplastics. Comp Part A. 2000;31:1191–202.

    Article  Google Scholar 

  4. Turnbull D, Fisher JC. Rate of nucleation in condensed systems. J Chem Phys. 1949;17:71–3.

    Article  CAS  Google Scholar 

  5. Hoffman JD, Lauritzen JI. Crystallization of bulk polymers with chain folding—theory of growth of lamellar spherulites. J Res Nat Bur Stand. 1961;65A:297–336.

    Article  CAS  Google Scholar 

  6. Nakamura K, Watanabe T, Katayama K. Some aspects of nonisothermal crystallization of polymers. I. relationship between crystallization temperature, crystallinity, and cooling conditions. J Appl Polym Sci. 1972;16:1077–91.

    Article  CAS  Google Scholar 

  7. Ziabicki A. Theoretical analysis of oriented and non-isothermal crystallization. Colloid Polym Sci. 1974;252:433–47.

    Article  CAS  Google Scholar 

  8. Ozawa T. Kinetics of non-isothermal crystallization. Polymer. 1971;12:150–8.

    Article  CAS  Google Scholar 

  9. Patel RM, Sprueill JE. Crystallization kinetics during polymer processing: analysis of available approaches for process modeling. Polym Eng Sci. 1991;31:730–8.

    Article  CAS  Google Scholar 

  10. Le Goff R, Poutot G. Study and modeling of heat transfer during the solidification of semi-crystalline polymers. Int J Heat Mass Tran. 2005;48:5417–30.

    Article  Google Scholar 

  11. Malkin AY, Beghishev VP, Keapin IA. General treatment of polymer crystallization kinetics. Part I. A new macrokinetic equation and its experimental verification. Polym Eng Sci. 1984;24:1396–401.

    Article  CAS  Google Scholar 

  12. Supaphol P. Application of the Avrami, Tobin, Malkin and Urbanovici–Segal macrokinetic models to isothermal crystallization of syndiotactic polypropylene. Thermochim Acta. 2001;370:37–48.

    Article  CAS  Google Scholar 

  13. Lee Y, Porter RS. Double-melting behavior of poly(ether ether ketone). Macromolecular. 1987;20:1336–41.

    Article  CAS  Google Scholar 

  14. Blundell DJ, Osborn BN. The morphology of poly(aryl-ether-ether-ketone). Polymer. 1983;24:953–8.

    Article  CAS  Google Scholar 

  15. Latimmer MP, Hobbs JK, Hill MJ. On the origin of the multiple endotherms in PEEK. Polymer. 1992;33:3971–3.

    Article  Google Scholar 

  16. Verma RK, Velikov V, Kander RG. SAXS studies of lamellar level morphological changes during crystallization and melting in PEEK. Polymer. 1996;37:5357–65.

    Article  CAS  Google Scholar 

  17. Bessard E, De Almeida O, Bernhart G. Melt state behaviour of PEEK and processing window interpretation for fast compression moulding process. In: Chinesta F, Chastel Y, El Mansori M, editors. AIP conference proceedings. Paris: AMPT; 2011.

    Google Scholar 

  18. Cheng SZD, Cao MY, Wunderlich B. Glass transition and melting of PEEK. Macromolecular. 1986;19:1868–76.

    Article  CAS  Google Scholar 

  19. Basset DC, Olley RH, Al Raheil IAM. On crystallization phenomena in PEEK. Polymer. 1988;29:1745–54.

    Article  Google Scholar 

  20. Velisaris C, Seferis J. Crystallization kinetics of polyetheretherketone (PEEK) matrices. Polym Eng Sci. 1986;26:1574–81.

    Article  CAS  Google Scholar 

  21. Cebe P. Application of the parallel Avrami model to crystallization of PEEK. Polym Eng Sci. 1988;28:1192–7.

    Article  CAS  Google Scholar 

  22. Tan S, Su A, Luo J. Crystallization kinetics of poly(ether ether ketone) (PEEK) from its metastable melt. Polymer. 1999;40:1223–31.

    Article  CAS  Google Scholar 

  23. Chao SC, Chen M, Chung CT. Isothermal crystallization and melting behavior of short carbon fiber reinforced poly(ether ether ketone) composites. J Polym Res. 1998;5:221–6.

    Article  CAS  Google Scholar 

  24. Wei CL, Chen M, Yu FE. Temperature modulated DSC and DSC studies on the origin of double melting peaks in poly(ether ether ketone). Polymer. 2003;44:8185–93.

    Article  CAS  Google Scholar 

  25. Avrami M. Kinetics of phase change. I general theory. J Chem Phys. 1939;7:1103–12.

    Article  CAS  Google Scholar 

  26. Supaphol P, Spruiell JE. Application of the Avrami, Tobin, Malkin and simultaneous Avrami macrokinetic models to isothermal crystallization of syndiotactic polypropylenes. J Macromol Sci. 2000;39:257–77.

    Google Scholar 

  27. Malek J. Kinetic analysis of crystallization processes in amorphous materials. Thermochim Acta. 2000;355:239–53.

    Article  CAS  Google Scholar 

  28. Trende A, Astrom BT, Wöginger A. Modelling of heat transfer in thermoplastic composites manufacturing: double-belt press lamination. Comp Part A. 1999;30:935–43.

    Article  Google Scholar 

  29. Cebe P. Non-isothermal crystallization of poly(ether ether ketone) aromatic polymer composite. Polym Comp. 1988;9:271–9.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was carried out as part of the cooperative INMAT2 project and was financially supported by the Fond Unique Interministériel. The authors wish to thank the project partners for their contribution to the present work. Further thanks are addressed to the technicians of the Institut Clément Ader for their assistance in the experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olivier De Almeida.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bessard, E., De Almeida, O. & Bernhart, G. Unified isothermal and non-isothermal modelling of neat PEEK crystallization. J Therm Anal Calorim 115, 1669–1678 (2014). https://doi.org/10.1007/s10973-013-3308-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-013-3308-8

Keywords

Navigation