Skip to main content
Log in

Thermo-optical properties of silver and gold nanofluids

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

This work focuses on the study of thermal diffusivity and physical properties of nanofluids with very low concentrations of silver or gold nanoparticles. Thermal measurements were performed by means of thermal lens spectroscopy in the dual beam configuration. Improvements of 20 and 16 % in the thermal diffusivity were observed for silver and gold nanofluids, respectively, in comparison with pure water. The estimation of the size distribution of the metallic nanoparticles was obtained through the fitting of the extinction spectra via Mie theory and images of field emission gun scanning electron microscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Wang XQ, Mujumdar AS. Heat transfer characteristics of nanofluids: a review. Int J Therm Sci. 2007;46:1–19.

    Article  Google Scholar 

  2. Eastman JA, Choi SUS, Li S, Yu W, Thompson LJ. Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles. Appl Phys Lett. 2001;78:718–20.

    Article  CAS  Google Scholar 

  3. Choi SUS. Enhancing thermal conductivity of fluids with nanoparticles. In: Singer DA, Wang HP, editors. Developments and applications of non-newtonian flows. New York: American Society of Mechanical Engineers; 1995. p. 99–105.

    Google Scholar 

  4. Tsai CY, Chien HT, Ding PP, Chan B, Luh TY, Chen PH. Effect of structural character of gold nanoparticles in nanofluid on heat pipe thermal performance. Mater Lett. 2004;58:1461–5.

    Article  CAS  Google Scholar 

  5. Kang SW, Wei WC, Tsai SH, Yang SW. Experimental investigation of silver nanofluid on heat pipe thermal performance. Appl Therm Eng. 2006;26:2377–82.

    Article  CAS  Google Scholar 

  6. Dieringer JA, McFarland AD, Shah NC, Stuart DA, Whitney AV, Yonzon CR, Young MA, Zhang X, Van RP. Surface enhanced Raman spectroscopy: new materials, concepts, characterization tools, and applications. Faraday Discuss. 2006;132:9.

    Article  CAS  Google Scholar 

  7. Nikoobakht B, El-Sayed MA. Surface-enhanced Raman scattering studies on aggregated gold nanorods. J Phys Chem A. 2003;107:3372.

    Article  CAS  Google Scholar 

  8. Moskovits M. Surface-enhanced Raman spectroscopy: a brief retrospective. J Raman Spectrosc. 2005;36:485–96.

    Article  CAS  Google Scholar 

  9. Hobro AJ, Jabeen S, Chowdhry BZ, Blanch EW. Time dependence of SERS enhancement for pyrimidine nucleosides. J Phys Chem C. 2010;114:7314–23.

    Article  CAS  Google Scholar 

  10. Warrier P, Yuan Y, Beck MP, Teja AS. Heat transfer in nanoparticle suspensions: modeling the thermal conductivity of nanofluids. Am Inst Chem Eng J. 2010;56:3243–56.

    Article  CAS  Google Scholar 

  11. Kim SH, Choi SR, Kim D. Thermal conductivity of metal-oxide nanofluids: particle size dependence and effect of laser irradiation. J Heat Transf. 2007;129:298–307.

    Article  CAS  Google Scholar 

  12. Beck MP, Yuan Y, Warrier P, Teja AS. The effect of particle size on the thermal conductivity of alumina nanofluids. J Nanopart Res. 2009;11:1129–36.

    Article  CAS  Google Scholar 

  13. Keblinski P, Phillpot SR, Choi SUS, Eastman JA. Mechanisms of heat flow in suspensions of nanosized particles (nanofluids). Int J Heat Mass Transf. 2002;45:855–63.

    Article  CAS  Google Scholar 

  14. Keblinski P, Eastman JA, Cahill DG. Nanofluids for thermal transport. Mater Today. 2005;8:6–44.

    Article  Google Scholar 

  15. Zhang X, Gu H, Fujii M. Effective thermal conductivity and thermal diffusivity of nanofluids containing spherical and cylindrical nanoparticles. Exp Therm Fluid Sci. 2007;31:593–9.

    Article  CAS  Google Scholar 

  16. Rusconi R, Rodari E, Piazza R. Optical measurements of the thermal properties of nanofluids. Appl Phys Lett. 2006;89:261916.

    Article  Google Scholar 

  17. Wang XQ, Mujumdar AS. A review on nanofluids—part II: experiments and applications. Braz J Chem Eng. 2008;25:631–48.

    Article  Google Scholar 

  18. Wang X, Xu X, Choi SUS. Thermal conductivity of nanoparticle—fluid mixture. J Thermophys Heat Transf. 1999;13:474–80.

    Article  CAS  Google Scholar 

  19. Patel HE, Das SK, Sundararajan T, Nair AS, George B, Pradeep T. Thermal conductivities of naked and monolayer protected metal nanoparticles based nanofluids: manifestation of anomalous enhancement and chemical effects. Appl Phys Lett. 2003;83:2931–3.

    Article  CAS  Google Scholar 

  20. Frens G. Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions. Nat Phys Sci. 1973;241:21–3.

    Article  Google Scholar 

  21. Ji X, Song X, Li J, Bai Y, Yang W, Peng X. Size control of gold nanocrystals in citrate reduction: the third role of citrate. J Am Chem Soc. 2007;129:13939–48.

    Article  CAS  Google Scholar 

  22. Ingle JD, Crouch SR. Spectrochemical analysis. Upper Saddle River: Prentice Hall; 1988. p. 34–5.

    Google Scholar 

  23. Bohren CF, Huffman DR. Absorption and scattering of light by small particles. New York: Wiley; 1983. p. 71.

    Google Scholar 

  24. Mie G. Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen. Ann Phys. 1908;25(3):377–445.

    Article  CAS  Google Scholar 

  25. Slater JC. Quantum theory of molecules and solids, vol. 3. New York: McGraw-Hill; 1974.

    Google Scholar 

  26. Bohren CF, Huffman DR. Absorption and scattering of light by small particles. New York: Wiley; 1983. p. 126–9.

    Google Scholar 

  27. Camden J, Schatz GC. Nanosphere Optical Lab. 2009. doi:10254/nanohub-r1309.2. http://nanohub.org/resources/nsoptics.

  28. Anjos V, Bell MJV, de Vasconcelos EA, da Silva EF, Andrade AA, Franco RWA, Castro MPP, Esquef IA, Faria RT. Thermal-lens and photoacoustic methods for the determination of SiC thermal properties. Microelectron J. 2005;36:977–80.

    Article  CAS  Google Scholar 

  29. Shen J, Lowe RD, Snook RD. A model for cw laser induced mode-mismatched dual-beam thermal lens spectrometry. Chem Phys. 1992;165:385–96.

    Article  CAS  Google Scholar 

  30. Liz-Marzán LM. Tailoring surface plasmons through the morphology and assembly of metal nanoparticles. Langmuir. 2006;22:32–41.

    Article  Google Scholar 

  31. Link S, El-Sayed MA. Size and temperature dependence of the plasmon absorption of colloidal gold nanoparticles. J Phys Chem B. 1999;103:4212–7.

    Article  CAS  Google Scholar 

  32. Buongiorno J. Convective transport in nanofluids. J Heat Transf. 2006;128:240–51.

    Article  Google Scholar 

  33. Zhou SQ, Ni R. Measurement of the specific heat capacity of water-based Al2O3 nanofluid. Appl Phys Lett. 2008;92:093123. http://dx.doi.org/10.1063/1.2890431 (3 pages).

    Article  Google Scholar 

  34. Conde MR. Properties of aqueous solutions of lithium and calcium chlorides: formulations for use in air conditioning equipment design. Intern J Therm Sci. 2004;43:367–82.

    Article  CAS  Google Scholar 

  35. Salabat A, Shamshiri L, Sahrakar F. Thermodynamic and transport properties of aqueous trisodium citrate system at 298.15 K. J Mol Liq. 2005;118:67–70.

    Article  CAS  Google Scholar 

  36. Laliberté M. A model for calculating the heat capacity of aqueous solutions, with updated density and viscosity data. J Chem Eng Data. 2009;54:1725–60.

    Article  Google Scholar 

  37. Pérez JLJ, Fuentes RG, Ramirez JFS, Cruz-Orea A. Study of gold nanoparticles effect on thermal diffusivity of nanofluids based on various solvents by using thermal lens spectroscopy. Eur Phys J Special Top. 2008;153:159–61.

    Article  Google Scholar 

  38. Warrier P, Teja A. Effect of particle size on the thermal conductivity of nanofluids containing metallic nanoparticles. Nanoscale Res Lett. 2011;6:247.

    Article  Google Scholar 

  39. Xuan Y, Li Q. Heat transfer enhancement of nanofluids. Int J Heat Fluid Flow. 2000;21:58–64.

    Article  CAS  Google Scholar 

  40. Salazar A. On thermal diffusivity. Eur J Phys. 2003;24:351–8.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPQ), Fundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG) and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), Brazil.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Anjos.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moreira, L.M., Carvalho, E.A., Bell, M.J.V. et al. Thermo-optical properties of silver and gold nanofluids. J Therm Anal Calorim 114, 557–564 (2013). https://doi.org/10.1007/s10973-013-3021-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-013-3021-7

Keywords

Navigation