Skip to main content
Log in

Physical–chemical study of water in contact with a hydrophilic polymer: Nafion

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The study detailed in this paper is about the determination of the physical–chemical parameters of water, after keeping it in prolonged contact with the Nafion polymer. The parameters under study are: electrical conductivity, χ (μS cm−1); heat of mixing with acid (HCl), ΔQ HClmix (J kg−1) or basic (NaOH) solutions, ΔQ NaOHmix  (J kg−1), and pH. χ increases of up to two orders of magnitude, ΔQ NaOHmix  (J kg−1) is exothermic and increases as the electrical conductivity increases, with a roughly linear trend, up to one order of magnitude. The analogous ΔQ HClmix  (J kg−1), on the contrary, is found to be null. The pH is quite acid and shows a very good linear correlation with log χ. The linear correlations hint at a single cause for the variation of the three very different physical–chemical parameters. This complex and hard to rationalize phenomenology, finds a good theoretical support in the work hypothesis of the formation of dissipative structures within the liquid. These are far-from-equilibrium systems outside the paradigm of classical thermodynamics. The work hypothesis of the formation of molecular aggregates of water molecules (dissipative structures, aqueous nanostructures, clusters, coherence domains, etc.) is shared with two other aqueous systems obtained with different preparation protocols, so we briefly recall them here: (1) EDS (extremely diluted solutions): obtained through an iterative process of successive dilutions and agitations. (2) IFW (iteratively filtered water): obtained through an iterative process of successive filtrations through sintered glass filters. (3) INW (iteratively nafionized water): obtained through an iterative process of successive drying and wetting of the Nafion polymer. Each protocol produces water exhibiting its own peculiarities, to the point that they can be considered different, albeit with the common element of a variation of the super-molecular structure of the water solvent. The physical–chemical properties of these perturbed waters cannot be framed by the paradigm of classical thermodynamics, but rather require the use of the thermodynamics of systems far from the equilibrium and of irreversible processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Ball P. Water: water-an enduring mystery. Nature. 2008;452:291–2.

    Article  CAS  Google Scholar 

  2. Elia V, Niccoli M. Thermodynamics of extremely diluted aqueous solutions. Ann NY Acad Sci. 1999;8(79):241–8.

    Article  Google Scholar 

  3. Elia V, Niccoli M. New physico-chemical properties of extremely diluted aqueous solutions. J Therm Anal Calorim. 2004;75:815–36.

    Article  CAS  Google Scholar 

  4. Elia V, Elia L, Cacace P, Napoli E, Niccoli M, Savarese F. Extremely dilute solutions as multi-variable systems. A study of calorimetric and conductometric behaviour as function of the parameter time. J Therm Anal Calorim. 2006;84:317–23.

    Article  CAS  Google Scholar 

  5. Elia V, Elia L, Napoli E, Niccoli M. Conductometric and calorimetric studies of serially diluted and agitated solutions: the dependence of intensive parameters on volume. Int J Ecodyn. 2007;1:361–72.

    Article  Google Scholar 

  6. Elia V, Napoli E, Niccoli M, Marchettini N, Tiezzi E. New physico-chemical properties of extremely dilute solutions. A conductivity study at 25 °C in relation to ageing. J Solut Chem. 2008;37:85–96.

    Article  CAS  Google Scholar 

  7. Belon P, Elia V, Elia L, Montanino M, Napoli E, Niccoli M. Conductometric and calorimetric studies of the diluted and agitated solutions. On the combined anomalous effect of time and volume parameters. J Therm Anal Calorim. 2008;93:459–69.

    Article  CAS  Google Scholar 

  8. Elia V, Elia L, Marchettini N, Napoli E, Niccoli M, Tiezzi E. Physico-chemical properties of aqueous extremely diluted solutions in relation to ageing. J Therm Anal Calorim. 2008;93:1003–11.

    Article  CAS  Google Scholar 

  9. Cacace CM, Elia L, Elia V, Napoli E, Niccoli M. Conductometric and pH metric titrations of extremely diluted solutions using HCl solutions as titrant. A molecular model. J Mol Liq. 2009;146:122–6.

    Article  CAS  Google Scholar 

  10. Elia V, Napoli E, Niccoli M. A molecular model of interaction between extremely diluted solutions and NaOH solutions used as titrant. Conductometric and pH metric titrations. J Mol Liq. 2009;149:45–50.

    Article  Google Scholar 

  11. Elia V, Napoli E. Dissipative structures in extremely diluted solutions of homeopathic medicines. A molecular model based on physico-chemical and gravimetric evidences. Int J Des Nat. 2010;5:39–48.

    Article  Google Scholar 

  12. Elia V, Napoli E, Niccoli M. Thermodynamic parameters for the binding process of the OH– ion with the dissipative structures. Calorimetric and conductometric titrations. J Therm Anal Calorim. 2010;102:1111–8.

    Article  CAS  Google Scholar 

  13. Cattaneo TMP, Vero S, Napoli E, Elia V. Influence of filtration processes on aqueous nanostructures by NIR spectroscopy. JCCE. 2011;5:1046–52.

    CAS  Google Scholar 

  14. Elia V, Marrari L, Napoli E. Aqueous nanostructures in water induced by electromagnetic field emitted by EDS. A conductometric study of fullerene and carbon nanotube EDS. J Therm Anal Calorim. 2012;107:843–51.

    Article  CAS  Google Scholar 

  15. Elia V, Napoli E, Niccoli M. Calorimetric and conductometric titrations of nanostructures of water molecules in iteratively filtered water. J Therm Anal Calorim. 2012. doi:10.1007/10973-011-2164-7015/12.

  16. Elia V, Marchettini N, Napoli E, Tiezzi E. Nanostructures of water molecules in iteratively filtered water. J Opt Adv Mater. 2012 (in press).

  17. Elia V, Napoli E. Nanostructures of water molecules in iteratively filtered water. Key Eng Mater. 2012;495:37–40.

    Article  Google Scholar 

  18. S Lo SY. Anomalous state of ice. Mod Phys Lett B. 1996;10:909–919.

  19. Lo SY, Bonavida B. Physical and chemical properties of IE clusters. Singapore: World Scientific; 1998.

    Google Scholar 

  20. Lo SY, et al. Physical properties of water with IE structure. Mod Phys Lett B. 1996;10:921–30.

    Article  Google Scholar 

  21. Lo SY, Xu G, Gann D. Evidence for the existence of stable-water-clusters at room temperature and normal pressure. Phys Lett A. 2009;373:3872–6.

    Article  CAS  Google Scholar 

  22. Rey L. Thermoluminescence of ultra-high dilutions of lithium chloride and sodium chloride. Physics A. 2003;323:67–74.

    Article  CAS  Google Scholar 

  23. Samal S, Geckeler KE. Unexpected solute aggregation in water on dilution. Chem Commun 2001;2224–2225.

  24. Lo SY, Li WC. Onsager’s formula, conductivity, and possible new phase transition. Mod Phys Lett B. 1999;13:885–93.

    Article  CAS  Google Scholar 

  25. Agmon N. The Grotthuss mechanism. Chem Phys Lett. 1995;244:456–62.

    Article  CAS  Google Scholar 

  26. Montagnier L, Aïssa J, Ferris S, Montagnier J-L, Lavallée C. Electromagnetic Signals are produced by aqueous nanostructures derived from bacterial DNA sequences. Interdiscip Sci Comput Life Sci. 2009;1:81–90.

    Article  CAS  Google Scholar 

  27. Montagnier L, Aïssa J, Lavallée C, Mbamy M, Varon J, Chenal H. Electromagnetic detection of HIV DNA in the blood of AIDS patients treated by antiretroviral therapy. Interdiscip Sci Comput Life Sci. 2009;1:245–53.

    Article  CAS  Google Scholar 

  28. Benveniste J, Jurgens P, Aïssa J. Digital recording/transmission of the cholinergic signal. Faseb J 10 A. 1996;1479.

  29. Arani R, Bono I, Del Giudice E, Preparata G. QED Coherence and the thermodynamics of water. Int J Mod Phys B. 1995;9:1813–45.

    Article  CAS  Google Scholar 

  30. Del Giudice E, Vitiello G. Role of the electromagnetic field in the formation of domains in the process of symmetry-breaking phase transitions. Phys Rev A. 2006;74:022105–9.

    Article  Google Scholar 

  31. Sivasubramanian S, Widom A, Srivastava YN. The Clausius–Mossotti phase transition in polar liquids. Physics A. 2005;345:356–66.

    Article  Google Scholar 

  32. Del Giudice E, Preparata G, Fleischmann M. QED coherence and electrolyte solutions. J Electroanal Chem. 2000;482:110–6.

    Article  Google Scholar 

  33. Preparata G. QED coherence in matter. Singapore: World Scientific; 1995.

    Book  Google Scholar 

  34. Yinnon CA, Yinnon TA. Domains in aqueous solutions: theory and experimental evidence. Mod Phys Lett. 2009;23:1959–73.

    Article  CAS  Google Scholar 

  35. Yinnon TA, Yinnon CA. Electric dipole aggregates in very dilute polar liquids: theory and experimental evidence. Int J Mod Phys. 2011;25:3707–43.

    Article  CAS  Google Scholar 

  36. Zheng JM, Chin WC, Khijniak E, Khijniak E Jr, Pollack GH. Surfaces and interfacial water: evidence that hydrophilic surfaces have long-range impact. Adv Colloid Interface Sci. 2006;127:19–27.

    Article  CAS  Google Scholar 

  37. Pollack GH. Water, energy and life: fresh views from the water’s edge. Int J Des Nat Ecodynamics. 2010;5:27–9.

    Article  Google Scholar 

  38. De Grotthuss CJT. Ann Chim LVIII. 1806;58:54–74.

    Google Scholar 

  39. Nicolis G. Physics of far-equilibrium systems and self-organization. In: Davies P, editor. The new physics. New York: Cambridge University Press; 1989.

    Google Scholar 

  40. Prigogine I. Time, structure and fluctuations. Nobel Lecture; 1977.

  41. Magnani A, Marchettini N, Ristori S, Rossi C, Rossi F, Rustici M, et al. Chemical waves and pattern formation in the 1,2-dipalmitoyl-sn-glycero-3-phosphocholine/water lamellar system. J Am Chem Soc. 2004;126:11406–7.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Elia.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Elia, V., Napoli, E. & Niccoli, M. Physical–chemical study of water in contact with a hydrophilic polymer: Nafion. J Therm Anal Calorim 112, 937–944 (2013). https://doi.org/10.1007/s10973-012-2576-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-012-2576-z

Keywords

Navigation