Skip to main content
Log in

Preparation of nanocrystalline BiFeO3 and kinetics of thermal process of precursor

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The Bi2Fe2(C2O4)5·5H2O was synthesized by solid-state reaction at low heat using Bi(NO3)3·5H2O, FeSO4·7H2O, and Na2C2O4 as raw materials. The nanocrystalline BiFeO3 was obtained by calcining Bi2Fe2(C2O4)5·5H2O at 600 °C in air. The precursor and its calcined products were characterized by thermogravimetry and differential scanning calorimetry, FT-IR, X-ray powder diffraction, and vibrating sample magnetometer. The data showed that highly crystallized BiFeO3 with hexagonal structure [space group R3c(161)] was obtained when the precursor was calcined at 600 °C in air for 1.5 h. The thermal process of the precursor in air experienced five steps which involved, at first, the dehydration of an adsorption water molecule, then dehydration of four crystal water molecules, decomposition of FeC2O4 into Fe2O3, decomposition of Bi2(C2O4)3 into Bi2O3, and at last, reaction of Bi2O3 and Fe2O3 into hexagonal BiFeO3. Based on Starink equation, the values of the activation energies associated with the thermal process of Bi2Fe2(C2O4)5·5H2O were determined. Besides, the most probable mechanism functions and thermodynamic functions (ΔS , ΔH , and ΔG ) of thermal processes of Bi2Fe2(C2O4)5·5H2O were also determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Hill NA. Why are there so few magnetic ferroelectrics? J Phys Chem B. 2000;104:6694–709.

    Article  CAS  Google Scholar 

  2. Hur N, Park S, Sharma PA, Ahn JA, Guha S, Cheong SW. Electric polarization reversal and memory in a multiferroic material induced by magnetic fields. Nature. 2004;429:392–5.

    Article  CAS  Google Scholar 

  3. Zhu WM, Ye ZG. Effects of chemical modification on the electrical properties of 0.67BiFeO3–0.33PbTiO3 ferroelectric ceramics. Ceram Int. 2004;30:1435–42.

    Article  CAS  Google Scholar 

  4. Seshadri R, Hill NA. Visualizing the role of Bi 6s “lone pairs” in the off-center distortion in ferromagnetic BiMnO3. Chem Mater. 2001;13:2892–9.

    Article  CAS  Google Scholar 

  5. Navarro MC, Lagarrigue MC, De Paoli JM, Carbonio RE, Gómez MI. A new method of synthesis of BiFeO3 prepared by thermal decomposition of Bi[Fe(CN)6]·4H2O. J Therm Anal Calorim. 2010;102:655–60.

    Article  CAS  Google Scholar 

  6. Moreira dos Santos A, Parashar S, Raju AR, Zhao YS, Cheetham AK, Rao CNR. Evidence for the likely occurrence of magneto-ferroelectricity in the simple perovskite, BiMnO3. Solid State Commun. 2002;122:49–52.

    Article  CAS  Google Scholar 

  7. Yuan GL, Or SW, Wang YP, Liu ZG, Liu JM. Preparation and multi-properties of insulated single-phase BiFeO3 ceramics. Solid State Commun. 2006;138:76–81.

    Article  CAS  Google Scholar 

  8. Yun KY, Noda M, Okuyama M. Structural and multiferroic properties of BiFeO3 thin films at room temperature. J Appl Phys. 2004;96:3399–403.

    Article  CAS  Google Scholar 

  9. Van Aken BB, Palstra TTM, Filippetti A, Spaldin NA. The origin of ferroelectricity in magnetoelectric YMnO3. Nat Mater. 2004;3:164–70.

    Article  Google Scholar 

  10. Yang CH, Koo TY, Jeong YH. Orbital order, magnetism, and ferroelectricity of multiferroic BiMnO3. J Magn Magn Mater. 2007;310:1168–70.

    Article  CAS  Google Scholar 

  11. Choi KJ, Biegalski M, Li YL, Sharan A, Schubert J, Uecker R, Reiche P, Chen YB, Pan XO, Gopalan V, Chen LQ, Schlom DG, Eom CB. Enhancement of ferroelectricity in strained BaTiO3 thin films. Science. 2004;306:1005–9.

    Article  CAS  Google Scholar 

  12. Michel C, Moreau JM, Achenbach GD, Gerson R, James WJ. The atomic structure of BiFeO3. Solid State Commun. 1969;7:701–4.

    Article  CAS  Google Scholar 

  13. Smolenskii GA, Isupov VA, Agranovskaya AI, Krainik NN. New ferroelectrics of complex composition. Sov Phys Solid State. 1961;2:2651–4.

    Google Scholar 

  14. Smolenskii GA, Yudin VM, Sher ES, Stolypin YE. Antiferromagnetic properties of some perovskites. Sov Phys JETP. 1963;16:622–4.

    Google Scholar 

  15. Moreau JM, Michel C, Gerson R, James WJ. Ferroelectric BiFeO3 X-ray and neutron diffraction study. J Phys Chem Solids. 1971;32:1315–20.

    Article  CAS  Google Scholar 

  16. Bucci JD, Robertson BK, James WJ. The precision determination of the lattice parameters and the coefficients of thermal expansion of BiFeO3. J Appl Crystallogr. 1972;5:187–91.

    Article  CAS  Google Scholar 

  17. Kubel F, Schmid H. Structure of a ferroelectric and ferroelastic monodomain crystal of the perovskite BiFeO3. Acta Crystallogr. 1990;46:698–702.

    Article  Google Scholar 

  18. Palkar VR, Pinto R. BiFeO3 thin films: novel effects. J Phys. 2002;58:1003–8.

    CAS  Google Scholar 

  19. Wang YP, Zhou L, Zhang MF, Chen XY, Liu JM, Liu ZG. Room-temperature saturated ferroelectric polarization in BiFeO3 ceramics synthesized by rapid liquid phase sintering. Appl Phys Lett. 2004;84:1731–3.

    Article  CAS  Google Scholar 

  20. Park TJ, Papaefthymiou GC, Viescas AJ, Moodenbaugh AR, Wong SS. Size-dependent magnetic properties of single-crystalline multiferroic BiFeO3 nanoparticles. Nano Lett. 2007;7:766–72.

    Article  CAS  Google Scholar 

  21. Mazumder R, Sujatha Devi P, Bhattacharya Dipten, Choudhury P, Sen A, Raja M. Ferromagnetism in nanoscale BiFeO3. Appl Phys Lett. 2007;91:062510–2.

    Article  Google Scholar 

  22. Lebeugle D, Colson D, Forget A, Viret M. Very large spontaneous electric polarization in BiFeO3 single crystals at room temperature and its evolution under cycling fields. Appl Phys Lett. 2007;91:022907–9.

    Article  Google Scholar 

  23. Lee YH, Wu JM, Lai CH. Influence of La doping in multiferroic properties of BiFeO3 thin films. Appl Phys Lett. 2006;88:042903–5.

    Article  Google Scholar 

  24. Selbach SM, Tybell T, Einarsrud MA, Grande T. Phase transitions, electrical conductivity and chemical stability of BiFeO3 at high temperatures. J Solid State Chem. 2010;183:1205–8.

    Article  CAS  Google Scholar 

  25. Ke H, Wang W, Wang YB, Xu JH, Jia DC, Lu Z, Zhou Y. Factors controlling pure-phase multiferroic BiFeO3 powders synthesized by chemical co-precipitation. J Alloy Compd. 2011;509:2192–7.

    Article  CAS  Google Scholar 

  26. Szafraniak I, Polomska M, Hilczer B, Pietraszko A, Kepiński L. Characterization of BiFeO3 nanopowder obtained by mechanochemical synthesis. J Eur Ceram Soc. 2007;27:4399–402.

    Article  CAS  Google Scholar 

  27. Das N, Majumdar R, Sen A, Maiti HS. Nanosized bismuth ferrite powder prepared through sonochemical and microemulsion techniques. Mater Lett. 2007;61:2100–4.

    Article  CAS  Google Scholar 

  28. Basu S, Pal M, Chakravorty D. Magnetic properties of hydrothermally synthesized BiFeO3 nanoparticles. J Magn Magn Mater. 2008;320:3361–5.

    Article  CAS  Google Scholar 

  29. Carvalho TT, Tavares PB. Synthesis and thermodynamic stability of multiferroic BiFeO3. Mater Lett. 2008;62:3984–6.

    Article  CAS  Google Scholar 

  30. Ghosh S, Dasgupta S, Sen A, Maiti HS. Low temperature synthesis of bismuth ferrite nanoparticles by a ferrioxalate precursor method. Mater Res Bull. 2005;40:2073–9.

    Article  CAS  Google Scholar 

  31. Jia DC, Xu JH, Ke H, Wang W, Zhou Y. Structure and multiferroic properties of BiFeO3 powders. J Eur Ceram Soc. 2009;29:3099–103.

    Article  CAS  Google Scholar 

  32. Popa M, Crespo D, Calderon-Moreno JM, Preda S. Synthesis and structural characterization of single-phase BiFeO3 powders from a polymeric precursor. J Am Ceram Soc. 2007;90:2723–7.

    Article  CAS  Google Scholar 

  33. Wei J, Xue DS. Low-temperature synthesis of BiFeO3 nanoparticles by ethylenediaminetetraacetic acid complexing sol–gel process. Mater Res Bull. 2008;43:3368–73.

    Article  CAS  Google Scholar 

  34. Xian T, Yang H, Shen X, Jiang JL, Wei ZQ, Feng WJ. Preparation of high-quality BiFeO3 nanopowders via a polyacrylamide gel route. J Alloy Compd. 2009;480:889–92.

    Article  CAS  Google Scholar 

  35. He XB, Gao L. Synthesis of pure phase BiFeO3 powders in molten alkali metal nitrates. Ceram Int. 2009;35:975–8.

    Article  CAS  Google Scholar 

  36. Wu XH, Wu WW, Cui XM, Liao S. Preparation of nanocrystalline BiFeO3 via a simple and novel method and its kinetics of crystallization. J Therm Anal Calorim. 2012;107:625–32.

    Article  CAS  Google Scholar 

  37. Starink MJ. The determination of activation energy from linear heating rate experiments: a comparison of the accuracy of isoconversion methods. Thermochim Acta. 2003;404:163–76.

    Article  CAS  Google Scholar 

  38. Vyazovkin S, Burnham AK, Criado JM, Pérez-Maqueda LA, Popescu C, Sbirrazzuoli N. ICTAC Kinetics Committee recommendations for performing kinetic computations on thermal analysis data. Thermochim Acta. 2011;520:1–19.

    Article  CAS  Google Scholar 

  39. Vlaev L, Nedelchev N, Gyurova K, Zagorcheva M. A comparative study of non-isothermal kinetics of decomposition of calcium oxalate monohydrate. J Anal Appl Pyrol. 2008;81:253–62.

    Article  CAS  Google Scholar 

  40. Liqing L, Donghua C. Application of iso-temperature method of multiple rate to kinetic analysis. J Therm Anal Calorim. 2004;78:283–93.

    Article  CAS  Google Scholar 

  41. Singh RK, Yadav A, Narayan A, Chandra M, Verma RK. Thermal, XRD, and magnetization studies on ZnAl2O4 and NiAl2O4 spinels, synthesized by citrate precursor method and annealed at 450 and 650 °C. J Therm Anal Calorim. 2012;107:205–10.

    Article  CAS  Google Scholar 

  42. Bahmani A, Sellami M, Bettahar N. Synthesis of bismuth mixed oxide by thermal decomposition of a coprecipitate precursor. J Therm Anal Calorim. 2012;107:955–62.

    Article  CAS  Google Scholar 

  43. Goel SP, Mehrotra PN. IR and thermal studies on lithium oxomolybdenum (VI) oxalate. J Therm Anal. 1985;30:145–51.

    Article  CAS  Google Scholar 

  44. Wu XH, Zhou KW, Wu WW, Cui XM, Li YN. Magnetic properties of nanocrystalline CuFe2O4 and kinetics of thermal decomposition of precursor. J Therm Anal Calorim. 2011. doi:10.1007/s10973-011-2104-6.

    Google Scholar 

  45. Budrugeac P, Muşat V, Segal E. Non-isothermal kinetic study on the decomposition of Zn acetate-based sol–gel precursor. J Therm Anal Calorim. 2007;88:699–702.

    Article  CAS  Google Scholar 

  46. Wu XH, Wu WW, Li SS, Cui XM, Liao S. Kinetics and thermodynamics of thermal decomposition of NH4NiPO4·6H2O. J Therm Anal Calorim. 2011;103:805–12.

    Article  CAS  Google Scholar 

  47. Chaiyo N, Muanghlua R, Niemcharoen S, Boonchom B, Seeharaj P, Vittayakorn N. Non-isothermal kinetics of the thermal decomposition of sodium oxalate Na2C2O4. J Therm Anal Calorim. 2012;107:1023–9.

    Article  CAS  Google Scholar 

  48. Turmanova SC, Genieva SD, Dimitrova AS, Vlaev LT. Non-isothermal degradation kinetics of filled with rise husk ash polypropene composites. Express Polym Lett. 2008;2:133–46.

    Article  CAS  Google Scholar 

  49. Ioiţescu A, Vlase G, Vlase T, Doca N. Kinetics of decomposition of different acid calcium phosphates. J Therm Anal Calorim. 2007;88:121–5.

    Article  Google Scholar 

  50. Vlase T, Vlase G, Birta N, Doca N. Comparative results of kinetic data obtained with different methods for complex decomposition steps. J Therm Anal Calorim. 2007;88:631–5.

    Article  CAS  Google Scholar 

  51. Vlaev LT, Georgieva VG, Genieva SD. Products and kinetics of non-isothermal decomposition of vanadium (IV) oxide compounds. J Therm Anal Calorim. 2007;88:805–12.

    Article  CAS  Google Scholar 

  52. Boonchom B, Baitahe R, Kongtaweelert S, Vittayakorn N. Kinetics and thermodynamics of zinc phosphate hydrate synthesized by a simple route in aqueous and acetone media. Ind Eng Chem Res. 2010;49:3571–6.

    Article  CAS  Google Scholar 

  53. Head C, Smith ACK. Applied physical chemistry. London: McMillan Press; 1982. p. 473.

    Google Scholar 

  54. Sĕsták JJ. Thermodynamical properties of solids. Prague: Academia; 1984.

    Google Scholar 

  55. Young D. Decomposition of solids. Oxford: Pergamon Press; 1966.

    Google Scholar 

Download references

Acknowledgements

This study was financially supported by the National Nature Science Foundation of China (Grant no. 21161002) and the Guangxi Nature Science Foundation of China (Grant no. 2011GXNSFA018036).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenwei Wu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, J., Su, P., Wu, W. et al. Preparation of nanocrystalline BiFeO3 and kinetics of thermal process of precursor. J Therm Anal Calorim 111, 1057–1065 (2013). https://doi.org/10.1007/s10973-012-2524-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-012-2524-y

Keywords

Navigation