Skip to main content
Log in

Kinetic study of template removal of MCM-41 derived from rice husk ash

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Molecular sieves MCM-41 were synthesized from rice husk ash (RHA) as alternative sources of silica, called RHA MCM-41. The material was synthesized by a hydrothermal method from a gel with the molar composition 1.00 CTMABr:4.00 SiO2:1.00 Na2O:200.00 H2O at 100 °C for 120 h with pH correction. The cetyltrimethylammonium bromide (CTMABr) was used as a structure template. The material was characterized by X-ray powder diffraction, FTIR, TG/DTG, and surface area determination by the BET method. The kinetics models proposed by Ozawa, Flynn–Wall, and Vyazovkin were used to determine the apparent activation energy for CTMA+ species decomposition from the pores of MCM-41 material. The results were compared with those obtained from the MCM-41 synthesized with silica gel. The synthesized material had specific surface area, size, and pore volume as specified by mesoporous materials developed from conventional sources of silica.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Costa MJF, et al. Model free kinetics applied for the removal of CTMA+ and TPA+ of the nanostructured hybrid AlMCM-41/ZSM-5 material. J Therm Anal Calorim. 2011. doi:10.1007/s10973-011-1297-z.

  2. Schuth F. Surface properties and catalytic performance of novel mesostructured oxides. Ber Bunsenges Phys Chem. 1995;99:1306–15.

    Google Scholar 

  3. Chao Z-S, Ruckenstein E. Effect of the nature of the templating surfactant on the synthesis and structure of mesoporous V–Mg–O. Langmuir. 2002;18:734–43.

    Google Scholar 

  4. Jang HT, et al. Utilization of rice husk ash as silica source for the synthesis of mesoporous silicas and their application to CO2 adsorption through TREN/TEPA grafting. J Hazard Mater. 2010;175:928–38.

    Article  Google Scholar 

  5. Wittayakun J, et al. Characterization of AlMCM-41 synthesized with rice husk silica and utilization as supports for platinum iron catalysts. Braz J Chem Eng. 2009;26:367–73.

    Article  Google Scholar 

  6. Chareonpanich M, et al. Synthesis of ZSM-5 zeolite from lignite fly ash and rice husk ash. Fuel Process Technol. 2004;85:1623–34.

    Article  CAS  Google Scholar 

  7. Kordatos K, et al. Synthesis of highly siliceous ZSM-5 zeolite using silica from rice husk ash. Microporous Mesoporous Mater. 2008;115:189–96.

    Article  CAS  Google Scholar 

  8. Milan KN, et al. A facile hydrothermal conversion of rice husk ash to ZSM-5 zeolite powders. J Am Ceram Soc. 2012;95:925–30.

    Google Scholar 

  9. Shamsuddin M, et al. Titanosilicate ETS-10 derived from rice husk ash. Microporous Mesoporous Mater. 2009;122:195–200.

    Article  Google Scholar 

  10. Endud S, Wong KL. Mesoporous silica MCM-48 molecular sieve modified with SnCl2 in alkaline medium for selective oxidation of alcohol. Microporous Mesoporous Mater. 2007;101:256–63.

    Article  CAS  Google Scholar 

  11. Prasetyoko D, et al. Conversion of rice husk ash to zeolite beta. Waste Manag. 2006;26:1173–9.

    Article  CAS  Google Scholar 

  12. Bajpai PK, Gokhale KVGK, Rao MS. Synthesis of mordenite type zeolite using silica from rice husk ash. Ind Eng Chem Prod Res Dev. 1981;20:721–6.

    Article  CAS  Google Scholar 

  13. Hotza D, Della VP, Junkes JA, Oliveira APN. Estudo comparativo entre a sílica obtida por lixívia ácida da casca de arroz e a sílica obtida por tratamento térmico da cinza de casca de arroz. Quím Nova. 2006;29:1175–9.

    Google Scholar 

  14. Koh CA, Nooney R, Tahir S. Characterisation and catalytic properties of MCM-41 and Pd/MCM-41 materials. Catal Lett. 1997;47:199–203.

    Article  CAS  Google Scholar 

  15. Ozawa T. A new method of analyzing thermogravimetric data. Bull Chem Soc Jpn. 1965;38:1881–6.

    Article  CAS  Google Scholar 

  16. Flynn JH, WALL LA. A quick, direct method for the determination of activation energy from thermogravimetric data. Polym Lett. 1966;4:323–8.

    Article  CAS  Google Scholar 

  17. Vyazovkin S, Wight CA. Model-free and model-fitting approaches to kinetic analysis of isothermal and nonisothermal data. Thermochim Acta. 1999;340–341:53–68.

    Article  Google Scholar 

  18. Brown ME, et al. Computational aspects of kinetic analysis: Part A: the ICTAC kinetics project-data, methods and results. Thermochim Acta. 2000;355:125–43.

    Article  CAS  Google Scholar 

  19. Castro KKV, et al. Effect of the Al-MCM-41 catalyst on the catalytic pyrolysis of atmospheric petroleum residue (ATR). J Therm Anal Calorim. 2011. doi:10.1007/s10973-011-1353-8.

  20. Silverstein RM. Identificação espectrométrica de compostos orgânicos. 7th ed. Rio de Janeiro: LTC; 2007.

    Google Scholar 

  21. Souza MJB, et al. Kinetic study of template removal of MCM-41 nanostructured material. J Therm Anal Calorim. 2004;75:693–8.

    Article  CAS  Google Scholar 

  22. Beck JS, et al. A new family of mesoporous molecular sieves prepared with liquid crystal templates. J Am Chem Soc. 1992;114:10834–43.

    Article  CAS  Google Scholar 

  23. Araujo AS, et al. Model free-kinetics applied to CTMA+ removal of AlMCM-41 molecular sieves. Thermochim Acta. 2004;413:235–40.

    Article  CAS  Google Scholar 

  24. Aquino FM, et al. Thermal decomposition kinetics of PrMO3 (M = Ni or Co) ceramic materials via thermogravimetry. J Therm Anal Calorim. 2011;104:701–5.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico) for financial support and CT—INFRA/LIEM for XRD analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Renata M. Braga.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Braga, R.M., Barros, J.M.F., Melo, D.M.A. et al. Kinetic study of template removal of MCM-41 derived from rice husk ash. J Therm Anal Calorim 111, 1013–1018 (2013). https://doi.org/10.1007/s10973-012-2516-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-012-2516-y

Keywords

Navigation