Skip to main content
Log in

Direct pyrolysis mass spectrometry to investigate the effects of dopants on characteristics of polypyrrole and its copolymers

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Polypyrrole and its copolymers with terepthalic acid bis-(2-thiophen-3-yl-ethyl)ester, (P(TATE-co-Py) were characterized by direct pyrolysis mass spectrometry to investigate the effects of dopant on thermal stability and conductivity. Conductivities of the films were measured with four-probe technique, and the results were compared with the pyrolysis data. In general, an increase in conductivity was detected as the stability of dopant increased. The extent of doping and the strength of interaction between the dopant and the polymer were decreased upon copolymerization with terepthalic acid bis-(2-thiophen-3-yl-ethyl)ester.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Kaambelkar VV, Ekhe JD, Paul SN. High yield polypyrrole: a novel approach to synthesis and characterization. J Mater Sci. 2011;46:5324–31.

    Article  Google Scholar 

  2. Levin KL, Pshchelko NS. Electrochemical properties of a polypyrrole-polyimide composite. Polym Sci Ser A. 2011;510–520.

  3. Awasthi S, Srivastava A, Singla ML. Electrochemical synthesis of novel conducting polymer composite: polypyrrole-pentacyanonitrosylferrate. Synth Met. 2010;160:13–4.

    Article  Google Scholar 

  4. Adhikari A, Radhakrishnan S, Patil R. Influence of dopant ions on properties of conducting polypyrrole and its electrocatalytic activity towards methanol oxidation. Synth Met. 2009;159:1682–8.

    Article  CAS  Google Scholar 

  5. Neoh KG, Lau KKS, Wong VVT, Kang ET, Tan KL. Structure and degradation behavior of polypyrrole doped with sulfonate anions of different sizes subjected to undoping redoping cycles. Chem Mater. 1996;8(1):167–72.

    Article  CAS  Google Scholar 

  6. Lu Y, Pich A, Adler HJP. Synthesis and characterization of polypyrrole dispersions prepared with different dopants. Macromol Symp. 2004;210(1):411–7.

    Article  CAS  Google Scholar 

  7. Otero TF, Marquez M, Suarez IJ. Polypyrrole: diffusion coefficients and degradation by overoxidation. J Phys Chem B. 2004;108(39):15429–33.

    Article  CAS  Google Scholar 

  8. Lopez J, Parres F, Rico I, Molina J, Bonastre J, Cases F. Monitoring the polymerization process of polypyrrole films by thermogravimetric and X-ray analysis. J Therm Anal Calorim. 2010;102(2):695–701.

    Article  CAS  Google Scholar 

  9. Atanasoska L, Naoi K, Smyrl WH. XPS studies on conducting polymers: polypyrrole films doped with perchlorate and polymeric anions. Chem Mater. 2002;4(5):988–94.

    Article  Google Scholar 

  10. Uyar T, Toppare L, Hacaloglu J. Thermal and structural characterization of polypyrrole by direct-insertion probe pyrolysis mass spectrometry. Synth Met. 2001;119(1–3):307–8.

    Article  CAS  Google Scholar 

  11. Gozet T, Hacaloglu J. Direct pyrolysis mass spectrometry analysis of fresh and aged PF6-doped polythiophenes. Polym Int. 2004;53(12):2162–8.

    Article  CAS  Google Scholar 

  12. Draye AC, Persenaire O, Brozek J, Ronda J, Kosek T, Dubois P. Thermogravimetric analysis of poly(epsilon-caprolactam) and poly[(epsilon-caprolactam)-co-(epsilon-caprolactone)] polymers. Polymer. 2001;42(20):8325–32.

    Article  CAS  Google Scholar 

  13. Herrera M, Matuschek G, Kettrup A. Fast identification of polymer additives by pyrolysis-gas chromatography/mass spectrometry. J Anal Appl Pyrol. 2003;70(1):35–42.

    Article  CAS  Google Scholar 

  14. Boutin M, Lesage J, Ostiguy C. Temperature-programmed pyrolysis hyphenated with metastable atom bombardment ionization mass spectrometry (TPPy/MAB-MS) for the identification of additives in polymers. J Am Soc Mass Spectrom. 2004;15(9):1315–9.

    Article  CAS  Google Scholar 

  15. Metz LA, Meruva NK, Morgan SL, Goode SR. UV laser pyrolysis fast gas chromatography/time-of-flight mass spectrometry for rapid characterization of synthetic polymers: optimization of instrumental parameters. J Anal Appl Pyrolysis. 2004;71(1):327–41.

    Article  CAS  Google Scholar 

  16. Chehimi MM, Abdeljalil E. A study of the degradation and stability of polypyrrole by inverse gas chromatography, X-ray photoelectron spectroscopy, and conductivity measurements. Synth Met. 2004;145(1):15–22.

    Article  CAS  Google Scholar 

  17. Weidner SM, Trimpin S. Mass spectrometry of synthetic polymers. Anal Chem. 2008;80(12):4349–61.

    Article  CAS  Google Scholar 

  18. Jakab E, Meszaros E, Omastova M. Thermal decomposition of polypyrroles. J Therm Anal Calorim. 2007;88:515–21.

    Article  CAS  Google Scholar 

  19. Aslan E, Toppare L, Hacaloglu J. Investigation of the effect of substituent on the growth of polymer for 3-substituted polythiophenes via pyrolysis mass spectrometry. Synth Met. 2005;155(1):191–5.

    Article  CAS  Google Scholar 

  20. Aslan E, Hacaloglu J, Toppare L. A pyrolysis mass spectrometry study of polythiophene copolymers. Polym Degrad Stab. 2007;92(5):822–8.

    Article  CAS  Google Scholar 

  21. Uyar T, Toppare L, Hacaloglu J. Pyrolysis of BF4-doped polypyrrole by direct insertion probe pyrolysis mass spectrometry. J Macromol Sci Part A. 2001;38(11):1141–50.

    Google Scholar 

  22. Uyar T, Toppare L, Hacaloglu J. Spectroscopic investigation of oxidation of p-toluene sulfonic acid doped polypyrrole. Synth Met. 2001;123(2):335–42.

    Article  CAS  Google Scholar 

  23. Uyar T, Toppare L, Hacaloglu J. Fluoride substitution on polypyrrole during electrochemical synthesis in the presence of N(Bu4)BF4. Macromol Rapid Commun. 2001;22(3):199–201.

    Article  CAS  Google Scholar 

  24. Levent A, Hacaloglu J, Toppare L, Yagci Y. Synthesis and characterization of a new copolymer of PTSA doped polypyrrole. Synth Met. 2003;135(1–3):457–8.

    Article  Google Scholar 

  25. Coskun Y, Cirpan A, Toppare L. Conducting polymers of terepthalic acid bis-(2-thiophen-3-yl-ethyl) ester and their electrochromic properties. Polymer. 2004;45(15):4989–95.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jale Hacaloglu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gürel, E.A., Toppare, L. & Hacaloglu, J. Direct pyrolysis mass spectrometry to investigate the effects of dopants on characteristics of polypyrrole and its copolymers. J Therm Anal Calorim 111, 1133–1138 (2013). https://doi.org/10.1007/s10973-012-2495-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-012-2495-z

Keywords

Navigation