Skip to main content
Log in

Isothermal cure kinetics of uncatalyzed and catalyzed diglycidyl ether of bisphenol-A/carboxylated polyester hybrid powder coating

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The thermal cure behavior of diglycidyl ether bisphenol-A/carboxylated polyester hybrid powder coating system in the absence and presence of catalyst was monitored using differential scanning calorimetry. Curing temperatures were between 160 and 200 °C. The experimental results showed an autocatalytic behavior of the reaction, which could be described by the model proposed by Kamal. This model includes two rate constants k 1 and k 2 and two reaction orders m and n. The activation energies E a1 and E a2 of these rate constants were 51.7 and 42.3 kJ/mol for uncatalyzed cure reaction and 40.6 and 35.0 kJ/mol for externally catalyzed reaction. The average order of the overall reaction was found to be 2.45 and 2.72 for uncatalyzed and catalyzed system, respectively. Except for the late stage of cure reaction, the model agreed well with the experimental data, especially at high temperatures and in externally catalyzed cure reaction. A diffusion factor was introduced into the model to account for the effect of diffusion on the cure rate. The modified model greatly improved the predicated data at the late stage of cure reaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Weiss KD. Paint and coatings: a mature industry in transition. Prog Polym Sci. 1997;22:203–45.

    Article  CAS  Google Scholar 

  2. Misev TA. Powder coating, chemistry and technology. New York: Wiley; 1991.

    Google Scholar 

  3. Marold B, Funke W. Determination of the glass transition temperature at polymer surface from the temperature dependence of wetting. Prog Org Coat. 1994;23:287–97.

    Article  CAS  Google Scholar 

  4. Montserrat S, Calventus Y, Hutchinson JM. Physical aging of thermosetting powder coatings. Prog Org Coat. 2006;55:35–42.

    Article  CAS  Google Scholar 

  5. Musto P, Martuscelli E, Ragosta G, Russo P, Villano P. Tetrafunctional epoxy resins: modeling the curing kinetics based on FTIR spectroscopy data. J Appl Polym Sci. 1999;74:532–40.

    Article  CAS  Google Scholar 

  6. Omrani A, Simon LC, Rostami AA, Ghaemy M. Cure kinetics FTIR study of epoxy/nickel–imidazole system. Int J Chem Kinet. 2008;40:663–9.

    Article  CAS  Google Scholar 

  7. Mijovic J, Andjelic S. A study of reaction kinetics by near-infrared spectroscopy. 1. Comprehensive analysis of a model epoxy/amine system. Macromolecules. 1995;28:2787–96.

    Article  CAS  Google Scholar 

  8. Bombard I, DaSilva B, Dufour P, Laurent P. Experimental predictive control of the infrared cure of a powder coating: a non-linear distributed parameter model based approach. Chem Eng Sci. 2010;65:962–75.

    Article  CAS  Google Scholar 

  9. Roman F, Montserrat S. Thermal and dielectric properties of powder coatings based on carboxylated polyester and β-hydroxyalkylamide. Prog Org Coat. 2006;56:311–8.

    Article  CAS  Google Scholar 

  10. Madbouly SA, Serag Eldin AF, Mansour AA. Effect of curing on the broadband dielectric spectroscopy of powder coating. Eur Polym J. 2007;43:2462–70.

    Article  CAS  Google Scholar 

  11. Ramis X, Salla JM. Time-temperature transformation (TTT) cure diagram of an unsaturated polyester resin. Polym Sci B Polym Phys. 1997;35:371–88.

    Article  CAS  Google Scholar 

  12. Salla JM, Ramis X, Morancho JM, Cadenato A. Isoconversional kinetic analysis of a carboxyl terminated polyester resin crosslinked with triglycidylisocyanurate (TGIC) used in powder coating from experimental results obtained by DSC and TMDMC. Thermochim Acta. 2002;388:355–70.

    Article  CAS  Google Scholar 

  13. Ramis X, Cadenato A, Morancho JM, Salla JM. Curing of a thermosetting powder coating by means of DMTA, TMA and DSC. Polymer. 2003;44:2067–79.

    Article  CAS  Google Scholar 

  14. Belder EG, Rutten HJJ, Perera DY. Cure characterisation of powder coatings. Prog Org Coat. 2001;42:142–9.

    Article  CAS  Google Scholar 

  15. Kalaee M, Akhlaghi S, Nouri A, Mazinani S, Mortezaei M, Afsharid M, Mostafanezhad D, Allahbakhsh A, Dehaghi HA, Amirsadri A, Gohari DP. Effect of nano-sized calcium carbonate on cure kinetics and properties of polyester/epoxy blend powder coatings. Prog Org Coat. 2011;71:173–80.

    Article  CAS  Google Scholar 

  16. Wuzella G, Kandelbauer A, Mahendran AR, Teischinger A. Thermochemical and isoconversional kinetic analysis of a polyester–epoxy. Prog Org Coat. 2011;70:186–91.

    Article  CAS  Google Scholar 

  17. Rabearison N, Jochum Ch, Grandidier JC. A cure kinetics, diffusion controlled and temperature dependent, identification of the Araldite LY556 epoxy. J Mater Sci. 2011;46:787–96.

    Article  CAS  Google Scholar 

  18. Saad GR, Abd Elhamid EE, Elmenyawy SA. Dynamic cure kinetics and thermal degradation of brominated epoxy resin–organoclay based nanocomposites. Thermochim Acta. 2011;524:186–93.

    Article  CAS  Google Scholar 

  19. Fraga F, Soto VH, Rodríguez-Núñez E, Martínez-Ageitos JM, Rodríguez V. Cure kinetic of the epoxy network diglycidyl ether of bisphenol A (BADGE n = 0)/Amantidine. J Therm Anal Calorim. 2007;87:97–100.

    Article  CAS  Google Scholar 

  20. Guo Q, Huang Y, Zhang Y-Y, Zhu L-R, Zhang B-L. Curing behavior of epoxy resins with a series of novel curing agents containing 4,4′-biphenyl and varying methylene units. J Therm Anal Calorim. 2010;102:915–22.

    Article  CAS  Google Scholar 

  21. López M, Blanco M, Vazquez A, Ramos JA, Arbelaiz A, Gabilondo N, Echeverríaand JM, Mondragon I. Isoconversional kinetic analysis of cresol-clay nanocomposites. J Therm Anal Calorim. 2009;96:567–73.

    Article  Google Scholar 

  22. Koreeda T, Matos J, Gonçalves CS. Cure kinetics of epoxy composite applied on stator bars insulate on. J Therm Anal Calorim. 2011;106:631–5.

    Article  CAS  Google Scholar 

  23. Vyazovkin S, Burnham AK, Criado JM, Pérez-Maqueda LA, Popescu C, Sbirrazzuoli N. ICTAC Kinetics Committee recommendations for performing kinetic computations on thermal analysis data. Thermochim Acta. 2011;520:1–19.

    Article  CAS  Google Scholar 

  24. Kamal MR, Sourour S. Differential scanning calorimetry of epoxy cure: isothermal cure kinetics. Thermochim Acta. 1976;14:41–59.

    Article  Google Scholar 

  25. Fournier J, Williams G, Dutch C, Aldridge GA. Changes in molecular dynamics during bulk polymerization of an epoxide–amine system as studied by dielectric relaxation spectroscopy. Macromolecules. 1996;29:7097–107.

    Article  CAS  Google Scholar 

  26. Opalicki M, Kenny JM, Nicholias L. Cure kinetics of neat and carbon-fiber-reinforced TGDDM/DDS epoxy systems. J Appl Polym Sci. 1996;61:1025–37.

    Article  CAS  Google Scholar 

  27. Gao J, Li Y. Curing kinetics and thermal property characterization of a bisphenol-S epoxy resin and DDS system. Polym Int. 2000;49:1590–5.

    Article  CAS  Google Scholar 

  28. Sánchez-Cabezudo M, Prolongo MG, Salomand C, Masegosa RM. Cure kinetics of epoxy resin and thermoplastic polymer. J Therm Anal and Calorim. 2006;86:699–705.

    Article  Google Scholar 

  29. Román F, Montserrat S, Hutchinson JM. On the effect of montmorillonite in the curing reaction of epoxy nanocomposites. J Therm Anal and Calorim. 2007;87:113–8.

    Article  Google Scholar 

  30. Barral L, Cano J, López J, López-Bueno I, Nogueira P, Ramírez C. Cure kinetics of amine tetrafunctional epoxy blends with poly(styrene-co-acrylonitrile). J Therm Anal Calorim. 1999;56:1033–40.

    Article  CAS  Google Scholar 

  31. López J, López-Bueno I, Nogueira P, Ramírez C, Abad MJ, Barral L, Cano J. Effect of poly(styrene-co-acrylonitrile) on the curing of an epoxy/amine resin. Polymer. 2001;42:1669–77.

    Article  Google Scholar 

  32. Boey FYC, Qiang W. Experimental modeling of the cure kinetics of an epoxy-hexaanhydro-4-methylphthalicanhydride (MHHPA) system. Polymer. 2000;41:2081–94.

    Article  CAS  Google Scholar 

  33. Macan J, Brnardić I, Ivanković M, Mencer HJ. DSC study of cure kinetics of DGEBA-based epoxy resin with poly(oxypropylene) diamine. J Therm Anal Calorim. 2005;81:369–73.

    Article  CAS  Google Scholar 

  34. Ma Z, Gao J. Curing kinetics of o-cresol formaldehyde epoxy resin and succinic anhydride system catalyzed by tertiary amine. J Phys Chem B. 2006;110:12380–3.

    Article  CAS  Google Scholar 

  35. Chern CS, Poehlein GW. A kinetic-model for curing reactions of epoxides with amines. Polym Eng Sci. 1987;27:788–95.

    Article  CAS  Google Scholar 

  36. Cole KC, Hechler JJ, Noel D. A new approach to modeling the cure kinetics of epoxy/amine thermosetting resins. 2. Application to a typical system based on bis[4-(diglycidylamino)phenyl]methane and bis(4-aminophenyl) sulfone. Macromolecules. 1991;24:3098–110.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gamal R. Saad.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saad, G.R., Serag Eldin, A.F. Isothermal cure kinetics of uncatalyzed and catalyzed diglycidyl ether of bisphenol-A/carboxylated polyester hybrid powder coating. J Therm Anal Calorim 110, 1425–1430 (2012). https://doi.org/10.1007/s10973-011-2074-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-011-2074-8

Keywords

Navigation