Skip to main content
Log in

Thermal degradation of platinum(IV) precursors to antitumor drugs

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Organoplatinum antitumor agents are very effective, broad-spectrum drugs used for the treatment of a variety of cancerous conditions. The two most prominent of these, Cisplatin [cis-diamminodichloroplatinum(II)] and Carboplatin [diammino(1,1-cyclobutanedicarboxylato)platinum(II)], are large scale commercial successes. The third, Oxaliplatin [((trans-1,2-diamminocyclohexane)oxalato)platinum(II)], is now commercially available. The administration of all these drugs is accompanied by severe side effects. For Cisplatin, the most debilitating of these is kidney damage and extreme nausea. Several approaches to generate drug-release formulations that might mitigate toxic side effects have been explored. Now, platinum(IV) compounds which are more inert than platinum(II) compounds, and consequently less toxic, but which may be reduced to platinum(II) species within the cell are being evaluated for effectiveness in the treatment of cancer. The thermal stability of several precursors to compounds of this kind has been examined by thermogravimetry. In general, these materials lose ligands sequentially to generate a residue of platinum. This behavior may be generally useful for the characterization of such materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Scheme 3
Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Rosenberg B, VanCamp L, Krigas T. Inhibition of cell division in Escherichia coli by electrolysis products from a platinum electrode. Nature. 1965;205:698–6999.

    Article  CAS  Google Scholar 

  2. Rosenberg B, VanCamp L, Grimley EB, Thomson AJ. The inhibition of growth or cell division in Escherichia coli by different ionic species of platinum(IV) complexes. J Biol Chem. 1967;242:1347–52.

    CAS  Google Scholar 

  3. Rosenberg B, VanCamp L, Trosco JF, Mansour VH. Platinum compounds: a new class of potent antitumor agents. Nature. 1969;222:385–6.

    Article  CAS  Google Scholar 

  4. Rosenberg B. Platinum complexes for the treatment of cancer. In: Spiro TG, editor. Metal ions in biology, vol 1: nuclei acid-metal ion interactions. New York: Wiley; 1980. p. 1–29.

    Google Scholar 

  5. Rosenberg B. Fundamental studies with cisplatin. Cancer. 1985;55:2303–14.

    Article  CAS  Google Scholar 

  6. Jamieson ER, Lippard SJ. Structure, recognition, and processing of cisplatin-DNA adducts. Chem Rev. 1999;99:2467–98.

    Article  CAS  Google Scholar 

  7. Wong E, Giandomenico CM. Current status of platinum-based antitumor drugs. Chem Rev. 1999;99:2451–66.

    Article  CAS  Google Scholar 

  8. Wang D, Lippard SJ. Cellular processing of platinum anticancer drugs. Nat Rev Drug Discovery. 2005;4:307–20.

    Article  CAS  Google Scholar 

  9. Dabrowiak JC, Bradner W. Platinum antitumor agents. Prog Med Chem. 1987;24:129158.

    Google Scholar 

  10. Mistry P, Kelland LR, Loh SY, Abel G, Murrer BA, Harrap KR. Comparison of cellular accumulation and cytotoxicity of cisplatin with that of tetraplatin and amminedibutyratodichloro(cyclohexylamine)platinum(IV) (JM221) in human ovarian carcinoma cell lines. Cancer Res. 1992;52(22):6188–93.

    CAS  Google Scholar 

  11. McKege M, Kelland L. New platinum drugs. In: Neidle S, Waring M, editors. Molecular aspects of drug-DNA interactions. New York: Macmillan; 1992. p. 169–212.

    Google Scholar 

  12. Jones TW, Chopra S, Kaufman JS, Flamenbaum W, Trump BF. cis-Diammine-dichloroplatinum(II)-induced acute renal failure in the rat. Correlation of structural and functional alterations. Lab Invest. 1985;52:363–74.

    CAS  Google Scholar 

  13. Rosenberg B. Biological effects of platinum compounds. New agents for the control of tumors. Platinum Metals Rev. 1971;15(2):42–51.

    CAS  Google Scholar 

  14. Aggrawal SK, Menon GK. Ultrastructural localization of calcium(2+) and its possible role in the amelioration of kidney toxicity due to cisplatin. J Clin Hematol Oncol. 1981;11:73–84.

    Google Scholar 

  15. Neuse E. Carrier-bound platinum and iron compounds with carcinostatic properties. Polym Adv Technol. 1998;9(10–11):786–93.

    Article  CAS  Google Scholar 

  16. Lebwohl D, Canetta R. Clinical development of platinum complexes in cancer therapy: an historical perspective and an update. Eur J Cancer. 1998;34:1522–34.

    Article  CAS  Google Scholar 

  17. Jagur-Grodzinski J. Polymers for targeted and/or sustained drug delivery. Polym Adv Technol. 2009;20:595–606.

    Article  CAS  Google Scholar 

  18. Hoste K, DeWinne K, Schacht E. Polymeric prodrugs. Int J Pharm. 2004;277(1–2):119–31.

    Article  CAS  Google Scholar 

  19. Khandare J, Minko T. Polymer-drug conjugates: progress in polymeric prodrugs. Prog Polym Sci. 2006;31(4):359–97.

    Article  CAS  Google Scholar 

  20. Duncan R. Polymer conjugates as anticancer nanomedicines. Nat Rev Cancer. 2006;6(9):688–701.

    Article  CAS  Google Scholar 

  21. Duncan R. The dawning era of polymer therapeutics. Nat Rev Drug Discov. 2003;2(5):347–60.

    Article  CAS  Google Scholar 

  22. Batz H-G. Polymeric drugs. Adv Polym Sci. 1977;23:25–53.

    CAS  Google Scholar 

  23. Langer R. Drug delivery and targeting. Nature. 1998;392(6679, Suppl):5–10.

    CAS  Google Scholar 

  24. Langer R. Drug delivery: drugs on target. Science. 2001;293(5527):58–9.

    Article  CAS  Google Scholar 

  25. Allen TM, Cullis PR. Drug delivery systems: entering the mainstream. Science. 2004;303(5665):1818–22.

    Article  CAS  Google Scholar 

  26. Tomalia DA, Dewald JR, Hall M, Martin SJ, Smith PB. Preprint. 1st SPSJ International Polymer Conference, Kyoto, Japan 1984. p. 65.

  27. Tomalia DA, Baker H, Dewald JR, Hall M, Kallos G, Martin S, Roeck J, Ryder J, Smith PB. A new class of polymers: starburst-dendritic macromolecules. Polym J. 1985;17(1):117–32.

    Article  CAS  Google Scholar 

  28. Tomalia DA. Starburst/cascade dendrimers: fundamental building blocks for a new nanoscopic chemistry set. Aldrichim Acta. 1993;26(4):91–101.

    CAS  Google Scholar 

  29. Tomalia DA, Frechet JMJ, editors. Dendrimers and other dendritic polymers. New York: Wiley; 2001.

    Google Scholar 

  30. Tomalia DA, Reyna LA. Dendrimers as multi-purpose nanodevices for oncology drug delivery and diagnostic imaging. Biochem Soc Trans. 2007;35(1):61–7.

    Article  CAS  Google Scholar 

  31. Tomalia DA. Birth of a new macromolecular architecture: dendrimers as quantized building blocks for nanoscale synthetic organic chemistry. Aldrichim Acta. 2004;37(2):39–57.

    CAS  Google Scholar 

  32. Howell BA, Fan D, Rakesh L. Nanoscale dendrimer-platinum conjugates as multivalent antitumor drugs. In: Abd-El-Aziz AS, Carraher CE, Pittman CU, Zeldin M, editors. Inorganic and organometallic macromolecules: design and applications. New York: Springer Science; 2008. p. 269–94.

    Chapter  Google Scholar 

  33. Kim T-W, Chung PW, Slowing II, Tsunoda M, Yeung ES, Lin VS-Y. Structurally ordered mesoporous carbon nanoparticles as transmembrane delivery vehicle in human cancer cells. Nano Lett. 2008;8(11):3724–7.

    Article  CAS  Google Scholar 

  34. Prato M, Kostarelos K, Bianco A. Functionalized carbon nanotubes in drug design and discovery. Acc Chem Res. 2008;41(1):60–8.

    Article  CAS  Google Scholar 

  35. Liu Z, Winters M, Holodniy M, Dai HJ. siRNA delivery into human T cells and primary cells with carbon-nanotube transporters. Angew Chem Int Ed. 2007;46(12):2023–7.

    Article  CAS  Google Scholar 

  36. Liu Z, Cai W, He L, Nakayama N, Chen K, Sun X, Chen X, Dai H. In vivo biodistribution and highly efficient tumour targeting of carbon nanotubes in mice. Nature Nanotech. 2007;2(1):47–52.

    Article  CAS  Google Scholar 

  37. Dhar S, Liu Z, Thomale J, Dai H, Lippard SJ. Targeted single-wall carbon nanotube-mediated Pt(IV) prodrug delivery using folate as a homing device. J Am Chem Soc. 2008;130(34):11467–76.

    Article  CAS  Google Scholar 

  38. Feazell RP, Nakayama-Ratchford N, Dai H, Lippard SJ. Soluble single-walled carbon nanotubes as longboat delivery systems for platinum(IV) anticancer drug design. J Am Chem Soc. 2007;129(27):8438–9.

    Article  CAS  Google Scholar 

  39. Hall MD, Dillon CT, Zhang M, Beale P, Cai Z, Lai B, Stampfl APJ, Hambley TW. The cellular distribution and oxidation state of platinum(II) and platinum(IV) antitumour complexes in cancer cells. J Biol Inorg Chem. 2003;8(7):726–32.

    Article  CAS  Google Scholar 

  40. Ang WH, Pilet S, Scopelliti R, Buss F, Juilleavat-Jeannevet L, Dyson PJ. Synthesis and characterization of platinum(IV) anticancer drugs with functionalized aromatic carboxylate ligands: Influence of the ligands on drug efficacies and uptake. J Med Chem. 2005;48(25):8060–9.

    Article  CAS  Google Scholar 

  41. Barnes KR, Kutikov A, Lippard SJ. Synthesis, characterization, and cytotoxicity of a series of estrogen-tethered platinum(IV) complexes. Chem Biol. 2004;11(4):557–64.

    Article  CAS  Google Scholar 

  42. Rieter WJ, Pott KM, Taylor KML, Lin W. Nanoscale coordination polymers for platinum-based anticancer drug delivery. J Am Chem Soc. 2008;130(35):11584–5.

    Article  CAS  Google Scholar 

  43. Kay H, Palmer JW, Stanko JA. US Patent 0080131 A1, 2005.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. A. Howell.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Howell, B.A., Chhetri, P., Dumitrascu, A. et al. Thermal degradation of platinum(IV) precursors to antitumor drugs. J Therm Anal Calorim 102, 499–503 (2010). https://doi.org/10.1007/s10973-010-0933-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-010-0933-3

Keywords

Navigation