Skip to main content
Log in

Combining polyNiPAAm/chitosan microgel and bio-barrier polysiloxane matrix to create smart cotton fabric with responsive moisture management and antibacterial properties: influence of the application process

  • Original Paper: Functional coatings, thin films and membranes (including deposition techniques)
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Smart cotton fabric with simultaneous temperature and pH responsive moisture management and antibacterial properties was prepared by applying poly-(N-isopropylacrylamide)/chitosan microgel in combination with bio-barrier-forming sol–gel precursor dimethyloctadecyl (3-(trimethoxysilyl)propyl) ammonium chloride. Two application processes were used: one-step, which included deposition of a mixture of PNCS microgel and Si-QAC mixture (PNCS/SiQ (1S)), and two-step, comprising deposition of PNCS microgel followed by Si-QAC (PNCS + SiQ (2S)) and vice versa, i.e., deposition of Si-QAC followed by the PNCS microgel (SiQ + PNCS (2S)). Different analysis, i.e., nuclear magnetic resonance, thermogravimetry and dynamic light scattering were used to characterize the poly-(N-isopropylacrylamide)/chitosan microgel, while scanning electron microscopy, Fourier transform infrared, and X-ray photoelectron spectroscopy analysis were employed to determine the morphological and chemical properties of the modified cotton samples. Their functional properties were assessed by the moisture content, water vapor transmission rate, water retention capacity and antibacterial activity against Escherichia coli. While Si-QAC granted excellent antibacterial activity, it also influenced swelling/deswelling activity of the poly-(N-isopropylacrylamide)/chitosan microgel. Accordingly, it slightly impaired moisture content and water retention capacity at conditions when microgels swell but increased water repulsion from the poly-(N-isopropylacrylamide)/chitosan microgel at conditions that trigger its coil-to-globe transition. The application process greatly influenced the washing fastness of the coatings, and the PNCS + SiQ (2S) application process appeared most promising. In this case, the poly-(N-isopropylacrylamide)/chitosan microgel acted as a carrier for the sol–gel precursor dimethyloctadecyl (3-(trimethoxysilyl)propyl) ammonium chloride, causing its gradual release to the fiber surface triggered by a variation of temperature and pH and thus preserving its excellent antibacterial activity after five laboratory washings. To assure complete synergistic activity of both components in the coating, further optimization of the sol–gel precursor dimethyloctadecyl (3-(trimethoxysilyl)propyl) ammonium chloride concentration is necessary.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Simončič B (2012) In: Bischof Vukušić S (ed) Functional protective textiles. University of Zagreb, Faculty of Textile Technology, Zagreb

  2. Jocić D (2016) Tekstilec 59:107–114

    Article  Google Scholar 

  3. Jocić D (2008) Res J Text Appar 12:58–65

    Article  Google Scholar 

  4. Carreira AS, Gonçalves FAMM, Mendonça PV, Gil MH, Coelho JFJ (2010) Carbohydr Polym 80:618–630

    Article  Google Scholar 

  5. Prabaharan M, Mano JF (2006) Macromol Biosci 6:991–1008

    Article  Google Scholar 

  6. Stuart MAC, Huck WTS, Genzer J, Muller M, Ober C, Stamm M, Sukhorukov GB, Szleifer I, Tsukruk W, Urban M, Winnik F, Zauscher S, Luzinov I, Minko S (2010) Nat Mater 9:101–113

    Article  Google Scholar 

  7. Samal SK, Dash M, Dubruel P, Van Vlierberghe S (2014) In: Aguilar De Armas MR, Román JS (eds) Smart polymers and their applications, Woodhead Publishing, Cambridge, MA

  8. Crespy D, Rossi R (2007) Polym Int 56:1461–1468

    Article  Google Scholar 

  9. Wu J, Jiang Y, He J, Zhao S, Cai G, Wang J (2016) Text Res J 86:677–684

    Article  Google Scholar 

  10. Amiri S, Zadhoush A, Mallakpour SH, Larsen KL, Duroux L (2013) J Ind Text 43:116–131

    Article  Google Scholar 

  11. Xie J, Hsieh Y (2003) J Appl Polym Sci 89:999–1006

    Article  Google Scholar 

  12. Li M, Wang Z, Li BV (2015) Desalination Water Treat 57:16970–16980

    Google Scholar 

  13. Lučić M, Milosavljević N, Radetić M, Šaponjić Z, Radoičić M, Kalagasidis Krušić M (2014) Sep Purif Technol 122:206–216

    Article  Google Scholar 

  14. Shen C, Shen Y, Wen Y, Wang H, Liu W (2011) Water Res 45:5200–5210

    Article  Google Scholar 

  15. Sun H, Yang H, Huang W, Zhang S (2015) J Colloid Interface Sci 450:353–360

    Article  Google Scholar 

  16. Gupta B, Agarwal R, Alam MS (2010) Indian J Fibre Text Res 35:174–187

    Google Scholar 

  17. Kozicki M, Parteni O, Radu CD, Muresan A, Popa M, Ochiuz L, Sandu AV, Agafitei G, Istrate B, Munteanu C (2015) Rev Chin-Bucharest 66:1595–1599

    Google Scholar 

  18. Kolodziejczyk M, Szynkowska M, Pawlaczyk A, Lesniewska E, Matusiak A, Adamus A, Karolczak A (2016) Carbohydr Polym 140:74–87

    Article  Google Scholar 

  19. Vilchez S, Manich AM, Miras J et al. (2016) Therochim Acta 639:47–52

    Article  Google Scholar 

  20. Wang W, Yu W (2015) Carbohydr Polym 127:11–18

    Article  Google Scholar 

  21. Jocić D, Tourrette A, Glampedaki P, Warmoeskerken MMCG (2009) Mater Technol 24:14–23

    Article  Google Scholar 

  22. Tourrette A, De Geyter N, Jocić D, Morent R, Warmoeskerken MMCG, Leys C (2009) Colloid Surf A 352:126–135

    Article  Google Scholar 

  23. Glampedaki P, Calimontes A, Dutsck V, Warmoeskerken MMCG (2012) J Mater Sci 47:2078–2087

    Article  Google Scholar 

  24. Križman Lavrič P, Warmoeskerken MMCG, Jocić D (2012) Cellulose 19:257–271

    Article  Google Scholar 

  25. Križman Lavrič P, Tomšič B, Simončič B, Warmoeskerken MMCG, Jocić D (2012) Cellulose 19:273–287

    Article  Google Scholar 

  26. Kulkarni A, Tourrette A, Warmoeskerken MMCG, Jocić D (2010) Carbohydr Polym 82:1306–1314

    Article  Google Scholar 

  27. Bashari A, Hemmatinejad B, Pourjavadi A (2013) Polym Adv Technol 24:797–806

    Article  Google Scholar 

  28. Wang BX, Wu XL, Li J, Hao X, Lin J, Cheng DH, Lu YH (2016) Polymers 8:110

    Article  Google Scholar 

  29. Tomšič B, Križman Lavrič P, Simončič B, Jocić D (2013) Mater Technol 47:615–619

    Google Scholar 

  30. Tomšič B, Križman Lavrič P, Simončič B, Orel B, Jocić D (2012) J Sol Gel Sci Technol 61:463–476

    Article  Google Scholar 

  31. Nalwa HS (ed) (2003) Handbook of organic–inorganic hybrid materials and nanocomposites. American Scientific Publisher, Stevenson Ranch

    Google Scholar 

  32. Mahltig B, Textor T (2008) Nanosols and textiles. World Scientific Publishing Co Pte Ltd, Singapore

  33. Mahltig B, Fischer A (2010) J Polym Sci B 48:1562–1568

    Article  Google Scholar 

  34. Simončič B, Tomšič B (2010) Text Res J 80:1721

    Article  Google Scholar 

  35. Ismail WNW (2016) J Sol Gel Sci Technol 78:698–707

    Article  Google Scholar 

  36. Ascenzi JM (ed) (1996) Handbook of disinfectants and antiseptics. Marcel Dekker, New York, NY

    Google Scholar 

  37. Walters PA, Abbott EA, Isquith AJ (1973) Appl Microbiol 25:253–256

    Google Scholar 

  38. Ahlström B, Chelminska-Bertilsson M, Thompson RA, Edebo L (1995) Antimicrob Agents Chemother 39:50–55

    Article  Google Scholar 

  39. Massi L, Guittard F, Géribaldi S, Levy R, Duccini Y (2003) Int J Antimicrob Agents 21:20–26

    Article  Google Scholar 

  40. Gilbert P, Moore LE (2005) J Appl Microbiol 99:703–715

    Article  Google Scholar 

  41. Košak A, Lakić M, Lobnik A (2015) Tekstilec 58:4–22

    Google Scholar 

  42. Windler L, Height M, Nowack B (2013) Environ Int 53:62–73

    Article  Google Scholar 

  43. Lee CF, Wen CJ, Chiu WY (2003) J Polym Sci 41:2053–2063

    Article  Google Scholar 

  44. Moulder JF, Stickle WF, Sobol PE, Bomben KD (1995) Handbook of X-ray photoelectron spectroscopy. Eden Prairie Physical Electronics Inc, Chanhassen

  45. Tomšič B, Ilec E, Žerjav M, Hladnik A, Simončič A, Simončič B (2014) Colloid Surf B 122:72–78

    Article  Google Scholar 

  46. Zollinger H (1991) Color chemistry: syntheses, properties and applications of organic dyes and pigments, 2nd ed. VCH Publisher, Weinheim/New York, NY/Basel, Cambridge, MA

    Google Scholar 

  47. Li F, Wu H, Zhang H, Li F, Gu C-h, Yang Q (2009) Carbohydr Polym 77:773–778

    Article  Google Scholar 

  48. Jovančić P, Vilchez A, Molina R (2015) Plasma Process Polym 13:752–760

    Google Scholar 

  49. Nolan CM, Gelbaum LT, Lyon A (2006) Biomacromolecus 7:2918–2922

    Article  Google Scholar 

  50. Socrates G (2001) Infrared and Raman characteristic group frequencies. Wiley, New York, NY

    Google Scholar 

  51. Cao W, Wang Z, Zeng Q, Shen C (2016) Appl Polym Sci 389:404–410

    Google Scholar 

  52. Barazzouk S, Daneault C (2012) Nanomaterials 2:187–205

    Article  Google Scholar 

  53. Zubavichus Y, Zharnikov M, Shaporenko A, Fuchs O, Weinhardt L et al. (2004) J Phys Chem A 108:4557–4565

    Article  Google Scholar 

  54. An YH, Friedman RJ (1998) J Biomed Mater Res 43:338–348

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Slovenian Research Agency [Program P2-0213, Infrastructural Centre RIC UL-NTF and a Grant for the doctoral student D.Š.].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brigita Tomšič.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Štular, D., Vasiljević, J., Čolović, M. et al. Combining polyNiPAAm/chitosan microgel and bio-barrier polysiloxane matrix to create smart cotton fabric with responsive moisture management and antibacterial properties: influence of the application process. J Sol-Gel Sci Technol 83, 19–34 (2017). https://doi.org/10.1007/s10971-017-4382-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-017-4382-3

Keywords

Navigation