Skip to main content
Log in

Influences of sintering temperatures and crystallite sizes on electrochemical properties of LiNiPO4 as cathode materials via sol–gel route for lithium ion batteries

  • Original Paper: Devices based on sol-gel or hybrid materials
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Acetates of lithium (LiC2H3O2) and nickel (NiC2H3O2) together with ammonium dihydrogen phosphate (NH4)H2PO4 were used as starting materials to prepare LiNiPO4 cathode materials via sol–gel technique. This simple and effective method of using distilled water as main solvent was assisted by small amount of oxalic acid. Final product was obtained after sintering process at temperatures of 500 °C, 600  °C, 700 °C, and 800 °C for 3 h. The peaks in X-ray diffraction patterns reveal ordered olivine structure of LiNiPO4 under Pnma space group. The surface morphologies as in field emission scanning electron microscopy images clearly showed complete formation of LiNiPO4 with uniform size distribution. Charge–discharge tests recorded initial discharge capacities of 97.3 mAh g−1 and 91.1 mAh g−1 for LiNiPO4 obtained at sintering temperatures of 700 and 800 °C respectively in the voltage range 2.5–4.5 V. Insitu carbon coating during synthesis improved electrochemical performances of LiNiPO4. Sintering temperature 700 °C produced smaller LiNiPO4 particles compared to 800 °C, which enables good capacity retention.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Rui X, Zhao X, Lu Z, Tan H, Sim D, Hng HH et al. (2013) Olivine-Type Nanosheets for Lithium Ion Battery Cathodes, ACS Nano 7(6):5637–5646

  2. Alyoshin VA, Pleshakov EA, Ehrenberg H, Mikhailova D (2014) Platelike LiMPO4 (M=Fe, Mn, Co, Ni) for Possible Application in Rechargeable Li Ion Batteries: beyond Nanosize. J Phys Chem C 4:17426–17435

    Article  Google Scholar 

  3. Minakshi M, Singh P, Appadoo D, Martin DE (2011) Synthesis and characterization of olivine LiNiPO4 for aqueous rechargeable battery. Electrochim Acta 56:4356–4360

    Article  Google Scholar 

  4. Chen H, Chen M, Du C, Cui Y, Zuo P (2016) Synthesis and electrochemical performance of hierarchical nanocomposite of carbon coated LiCoPO4 crosslinked by graphene. Mater Chem Phys 171:6–10

    Article  Google Scholar 

  5. Gong C, Xue Z, Wen S, Ye Y, Xie X (2016) Advanced carbon materials/olivine LiFePO4 composites cathode for lithium ion batteries. J Power Sources 318:93–112

    Article  Google Scholar 

  6. Zhang SM, Zhang JX, Xu SJ, Yuan XJ, He BC (2013) Li ion diffusivity and electrochemical properties of FePO4 nanoparticles acted directly as cathode materials in lithium ion rechargeable batteries. Electrochim Acta 88:287–293

    Article  Google Scholar 

  7. Zhang Y, Huo Q, Du P, Wang L, Zhang A, Song Y et al. (2012) Advances in new cathode material LiFePO4 for lithium-ion batteries. Synth Met 162:1315–1326

    Article  Google Scholar 

  8. Huang Q, Wu Z, Su J, Long Y, Lv X, Wen Y (2016) Synthesis and electrochemical performance of Ti – Fe co-doped LiMnPO4/C as cathode material for lithium-ion batteries. Ceram Int 42:11348–11354

    Article  Google Scholar 

  9. Xiong J, Wang Y, Wang Y, Zhang J (2016) PVP-assisted solvothermal synthesis of LiMn0.8Fe0.2PO4/C cathode material for lithium ion batteries. Ceram Int 42:9018–9024

    Article  Google Scholar 

  10. Ding J, Su Z, Tian H (2016) Synthesis of high rate performance LiFe1- xMnxPO4/C composites for lithium-ion batteries. Ceram Int 42:12435–12440

    Article  Google Scholar 

  11. Karthickprabhu S, Hirankumar G, Maheswaran A, Bella RSD, Sanjeeviraja C (2014) Structural and electrical studies on Zn2+ doped LiCoPO4. J Electrostat 72:181–186

    Article  Google Scholar 

  12. Li H, Wang Y, Yang X, Liu L, Chen L, Wei J (2014) Improved electrochemical performance of 5 V LiCoPO4 cathode materials via yttrium doping. Solid State Ionics 255:84–88

    Article  Google Scholar 

  13. Doan TNL, Taniguchi I (2012) Effect of spray pyrolysis temperature on physical and electrochemical properties of LiCoPO4/C nanocomposites. Powder Technol 217:574–580

    Article  Google Scholar 

  14. Truong QD, Devaraju MK, Honma I (2014) LiMPO4 nanoplates by a supercritical ethanol. J Mater Chem A Mater Energy Sustain 2:17400–17407

    Article  Google Scholar 

  15. Karthickprabhu S, Hirankumar G, Maheswaran A, Sanjeeviraja C, Bella RSD (2013) Structural and conductivity studies on LiNiPO4 synthesized by the polyol method. J Alloys Compd 548:65–69

    Article  Google Scholar 

  16. Örnek A, Kazancioglu MZ (2016) A novel and effective strategy for producing core-shell LiNiPO4/C cathode material for excellent electrochemical stability using a long-time and low-level microwave approach. Scr Mater 122:45–49

    Article  Google Scholar 

  17. Devaraju MK, Truong QD, Honma I (2015) One pot synthesis of in situ Au decorated LiNiPO4 nanoplates for Li-ion batteries, Applied Materialstoday 1:95–99

  18. Hamamoto K, Fukushima M, Mamiya M, Yoshizawa Y, Akimoto J, Suzuki T et al. (2012) Morphology control and electrochemical properties of LiFePO4/C composite cathode for lithium ion batteries. Solid State Ionics 225:560–563

    Article  Google Scholar 

  19. Yoshida J, Stark M, Holzbock J, Hüsing N, Nakanishi S, Iba H et al. (2013) Analysis of the size effect of LiMnPO4 particles on the battery properties by using STEM-EELS. J Power Sources 226:122–126

    Article  Google Scholar 

  20. Zhao RR, Hung IM, Li YT, Chen HY, Lin CP (2012) Synthesis and properties of Co-doped LiFePO 4 as cathode material via a hydrothermal route for lithium-ion batteries. J Alloys Compd 513:282–288

    Article  Google Scholar 

  21. Fang H, Yi H, Hu C, Yang B, Yao Y, Ma W (2012) Effect of Zn doping on the performance of LiMnPO4 cathode for lithium ion batteries. Electrochim Acta 71:266–269

    Article  Google Scholar 

  22. Hu C, Yi H, Fang H, Yang B, Yao Y, Ma W et al. (2010) Improving the electrochemical activity of LiMnPO4 via Mn-site co-substitution with Fe and Mg. Electrochem commun 12:1784–1787

    Article  Google Scholar 

  23. Rajammal K, Sivakumar D, Duraisamy N, Ramesh K, Ramesh S (2016) Structural and electrochemical characterizations of LiMn1-xAl0.5xCu0.5xPO4 (x=0.0, 0.1, 0.2) cathode materials for lithium ion batteries. Mater Lett 173:131–135

    Article  Google Scholar 

  24. Lee J, Kumar P, Lee J, Moudgil BM, Singh RK (2013) ZnO incorporated LiFePO4 for high rate electrochemical performance in lithium ion rechargeable batteries. J Alloys Compd 550:536–544

    Article  Google Scholar 

  25. Li Y-D, Zhao S-X, Nan C-W, Li B-H (2011) Electrochemical performance of SiO2-coated LiFePO4 cathode materials for lithium ion battery. J Alloys Compd 509:957–960

    Article  Google Scholar 

  26. Rajammal K, Sivakumar D, Duraisamy N, Ramesh K, Ramesh S, (2016) Enhanced electrochemical properties of ZnO-coated LiMnPO4 cathode materials for lithium ion batteries, Ionics (Kiel) 22:1551–1556

  27. Zhao D, Feng Y, Wang Y, Xia Y (2013) Electrochemical performance comparison of LiFePO4 supported by various carbon materials. Electrochim Acta 88:632–638

    Article  Google Scholar 

  28. Cheng G, Zuo P, Wang L, Shi W, Ma Y, Du C, Cheng X, Gao Y, Yin G (2015) High-performance carbon-coated LiMnPO4 nanocomposites by facile two-step solid-state synthesis for lithium-ion battery, J Solid State Electr 19:281–288

  29. Zhou X, Xie Y, Deng Y, Qin X, Chen G (2015) The enhanced rate performance of LiFe0.5Mn0.5PO4/C cathode material via synergistic strategies of surfactant-assisted solid state method and carbon coating. Mater Chem A 3:996–1004

    Article  Google Scholar 

  30. Xie G, Zhu HJ, Liu XM, Yang H (2013) A core-shell LiFePO4/C nanocomposite prepared via a sol-gel method assisted by citric acid. J Alloys Compd 574:155–160

    Article  Google Scholar 

  31. Bechir MBEN, Rhaiem ABEN, Guidara K (2014) A. C. conductivity and dielectric study of LiNiPO4 synthesized by solid-state method. Bull Mater Sci 37:1–8

    Article  Google Scholar 

  32. Prabu M, Selvasekarapandian S (2012) Dielectric and modulus studies of LiNiPO4. Mater Chem Phys 134:366–370

    Article  Google Scholar 

  33. Rommel SM, Rothballer J, Schall N, Brünig C, Weihrich R (2015) Characterization of the carbon-coated LiNi1−yCoyPO4 solid solution synthesized by a non-aqueous sol-gel route. Ionics 325–333

    Google Scholar 

  34. Nucleus T, Umtaz MM, Yaqub A, Bahat SSA, Mujtaba A (2014) Electrocatalytic activity of LiNiPO4 and the copper doped analogues towards oxygen reduction. Nucleus 1:109–115

    Google Scholar 

  35. Dimesso L, Spanheimer C, Jaegermann W (2013) Effect of the Mg-substitution on the graphitic carbon foams—LiNi1- yMgyPO4 composites as possible cathodes materials for 5 V applications. Mater Res Bull 48:559–565

    Article  Google Scholar 

  36. Örnek A, Bulut E, Can M (2015) Influence of gradual cobalt substitution on lithium nickel phosphate nano-scale composites for high voltage applications. Mater Charact 106:152–162

    Article  Google Scholar 

  37. Zhao X, Baek D, Manuel J, Heo M, Yang R, Keun J et al. (2012) Electrochemical properties of magnesium doped LiFePO4 cathode material prepared by sol – gel method. Mater Res Bull 47:2819–2822

    Article  Google Scholar 

  38. Jiang T, Pan W, Wang J, Bie X, Du F, Wei Y et al. (2010) Carbon coated Li3V2(PO4)3 cathode material prepared by a PVA assisted sol—gel method. Electrochim Acta 55:3864–3869

    Article  Google Scholar 

  39. Sheng-kui Z, You W, Jie-qun LIU, Jian W (2012) Synthesis of LiMnPO4/C composite material for lithium ion batteries by sol gel method. Trans Nonferrous Met Soc China 22:2535–2540

    Article  Google Scholar 

  40. Manikandan P, Periasamy P, Jagannathan R (2013) Sol-gel synthesis and impedance characteristics of networked nanocrystalline olivine cathode for Li-ion full cells. J Mater Chem A 1:15397–15405

    Article  Google Scholar 

  41. Jugović D, Mitrić M, Kuzmanović M, Cvjetićanin N, Škapin S, Cekić B et al. (2011) Preparation of LiFePO4/C composites by co-precipitation in molten stearic acid. J Power Sources 196:4613–4618

    Article  Google Scholar 

  42. Kim K, Cho Y, Kam D, Kim H, Lee J (2010) Effects of organic acids as reducing agents in the synthesis of LiFePO4. J Alloys Compd 504:166–170

    Article  Google Scholar 

  43. Jian XM, Wenren HQ, Huang S, Shi SJ, Wang XL, Gu CD et al. (2014) Oxalic acid-assisted combustion synthesized LiVO3 cathode material for lithium ion batteries. J Power Sources 246:417–422

    Article  Google Scholar 

  44. Kabi S, Ghosh A (2013) Microstructure of Li (Mn1/3Ni1/3Co1/3)O2 cathode material for lithium ion battery: Dependence of crystal structure on calcination and heat-treatment temperature. Mater Res Bull 48:3405–3410

    Article  Google Scholar 

  45. Lu J, Zhou Y, Jiang T, Tian X, Tu X, Wang P (2016) Synthesis and optimization of three-dimensional lamellar LiFePO4 and nanocarbon composite cathode materials by polyol process. Ceram Int 42:1281–1292

    Article  Google Scholar 

  46. Han B, Meng X, Ma L, Nan J (2016) Nitrogen-doped carbon decorated LiFePO4 composite synthesized via a microwave heating route using polydopamine as carbon—nitrogen precursor. Ceram Int 42:2789–2797

    Article  Google Scholar 

  47. Ben Bechir M, Ben Rhaiem A, Guidara K (2014) A. C. conductivity and dielectric study of LiNiPO4 synthesized by solid-state method. Bull Mater Sci 37:1–8

    Article  Google Scholar 

  48. Wang L, Zhou X, Guo Y (2010) Synthesis and performance of carbon-coated Li3V2(PO4)3 cathode materials by a low temperature solid-state reaction. J Power Sources 195:2844–2850

    Article  Google Scholar 

  49. Wei C, He W, Zhang X, Xu F, Liu Q, Sun C et al. (2015) Effects of morphology on the electrochemical performances of Li3V2(PO4)3 cathode material for lithium ion batteries. RSC Adv 5:54225–54245

    Article  Google Scholar 

  50. Wang D, Cao L, Huang J, Wu J (2013) Effects of different chelating agents on the composition, morphology and electrochemical properties of LiV3O8 crystallites synthesized via sol – gel method. Ceram Int 39:3759–3764

    Article  Google Scholar 

  51. Muruganantham R, Sivakumar M, Subadevi R (2015) Enhanced rate performance of multiwalled carbon nanotube encrusted olivine type composite cathode material using polyol technique. J Power Sources 300:496–506

    Article  Google Scholar 

  52. Kwon SN, Song J, Mumm DR (2011) Effects of cathode fabrication conditions and cycling on the electrochemical performance of LiNiO2 synthesized by combustion and calcination. Ceram Int 37:1543–1548

    Article  Google Scholar 

  53. Zuo R, Liang X, Liu Z (2014) Synthesis and characterization of LiNi1/3Co1/3Mn1/3O2 material for rechargeable lithium batteries by polyacrylic acid-assisted sol – gel method, J Sol–Gel Sci Technol 69:303–310

  54. Rommel SM, Schall N, Brünig C, Weihrich R (2014) Challenges in the synthesis of high voltage electrode materials for lithium-ion batteries: a review on LiNiPO4. Monatsh Chem 145:385–404

    Article  Google Scholar 

  55. Xiao L, Guo Y, Qu D, Deng B, Liu H, Tang D (2013) Influence of particle sizes and morphologies on the electrochemical performances of spinel LiMn2O4 cathode materials. J Power Sources 225:286–292

    Article  Google Scholar 

  56. Zhu C, Nobuta A, Saito G, Nakatsugawa I, Akiyama T (2014) Solution combustion synthesis of LiMn2O4 fine powders for lithium ion batteries. Adv Powder Technol 25:342–347

    Article  Google Scholar 

  57. Cai Y, Huang Y, Wang X, Jia D, Pang W, Guo Z et al. (2015) Facile synthesis of LiMn2O4 octahedral nanoparticles as cathode materials for high capacity lithium ion batteries with long cycle life. J Power Sources 278:574–581

    Article  Google Scholar 

  58. Liu J, Chen H, Xie J, Sun Z, Wu N, Wu B (2014) Electrochemical performance studies of Li-rich cathode materials with different primary particle sizes. J Power Sources 251:208–214

    Article  Google Scholar 

  59. Wang X, Cheng K, Zhang J, Yu L, Yang J (2013) Advanced powder technology effect of carbon content and calcination temperature on the electrochemical performance of lithium iron phosphate/carbon composites as cathode materials for lithium-ion batteries. Adv Powder Technol 24:593–598

    Article  Google Scholar 

  60. Rajammal K, Sivakumar D, Duraisamy N, Ramesh K, Ramesh S (2016) Effect of sintering temperature on structural properties of LiMnPO4 cathode materials obtained by sol – gel method. J Sol–Gel Sci Technol 80:514–522

    Article  Google Scholar 

Download references

Acknowledgements

Authors would like to thank financial support from the University of Malaya for the PPP grant PG 099—2014B and Fundamental Research Grant Scheme (FP012-2015A), from Ministry of Education, Malaysia. One of the author Dr. Navaneethan Duraisamy acknowledges UGC-Dr. D.S. Kothari Postdoctoral Fellowship (Ref no: No.F.4-2/2006 (BSR)/EN/15-16/0031)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Ramesh.

Ethics declarations

Conflict of Interest

The authors declare that they have no competing of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rajammal, K., Sivakumar, D., Duraisamy, N. et al. Influences of sintering temperatures and crystallite sizes on electrochemical properties of LiNiPO4 as cathode materials via sol–gel route for lithium ion batteries. J Sol-Gel Sci Technol 83, 12–18 (2017). https://doi.org/10.1007/s10971-017-4372-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-017-4372-5

Keywords

Navigation