Skip to main content
Log in

Synthesis, structural, optical and morphological properties of CdSe:Zn/CdS core–shell nanoparticles

  • Original Paper: Nano-structured materials (particles, fibers, colloids, composites, etc.)
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

An Erratum to this article was published on 10 February 2017

Abstract

CdSe:Zn/CdS core–shell nanoparticles have been synthesized through the chemical precipitation method. The structural, optical and morphological properties of the synthesized core–shell nanoparticles were characterized by an X-ray diffraction, UV–vis absorption spectroscopy, photoluminescence spectroscopy and high-resolution transmission electron microscopy techniques. The X-ray diffraction analysis of the synthesized core–shell nanoparticles confirms the formation of cubic phase. The absorption and emission spectra of the synthesized core–shell nanoparticles show the red shift with respect to the CdS shell thickness on Zn-doped CdSe core. High-resolution transmission electron microscopy images display the synthesized core–shell nanoparticles were in spherical shape.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Huy BT, Seo MH, Phong PT, Lim JM, Lee YI (2014) Facile synthesis of highly luminescent Mg(II), Cu(I)-codoped CdS/ZnSe core/shell nanoparticles. Chem Eng J 236:75–81

    Article  Google Scholar 

  2. Alivisatos AP (1996) Semiconductor clusters, nanocrystals, and quantum dots. Science 271:933–937

    Article  Google Scholar 

  3. Bruchez M, Moronne JM, Gin P, Weiss S, Alivisatos AP (1998) Semiconductor nanocrystals as fluorescent biological labels. Science 281:2013–2016

    Article  Google Scholar 

  4. Coe S, Woo WK, Bawendi M, Bulovic V (2002) Electroluminescence from single monolayers of nanocrystals in molecular organic devices. Nature 420:800–803

    Article  Google Scholar 

  5. Peng XG, Manna L, Yang WD, Wickham J, Scher E, Kadavanich A, Alivisatos AP (2000) Shape control of CdSe nanocrystals. Nature 404:59–61

    Article  Google Scholar 

  6. Wang Y, Herron N, (1991) Nanometer-sized semiconductor clusters: materials synthesis,quantum size effects, and photophysical properties. J Phys Chem 95:525–532

    Article  Google Scholar 

  7. Noh M, Kim T, Lee H, Kim CK, Joo SW, Lee K (2010) Fluorescence quenching caused by aggregation of water-soluble CdSe quantum dots. Colloid Surface A 359:39–44

    Article  Google Scholar 

  8. Saunders BR, Turner ML (2008) Nanoparticle-polymer photovoltaic cells. Adv Colloid Interface Sci 138:1–23

    Article  Google Scholar 

  9. Yen BKH, Scott NE, Jensen KF, Bawendi MG (2003) A continuous-flow microcapillary reactor for the preparation of a size series of CdSe nanocrystals. Adv Mater 15:1858–1862

    Article  Google Scholar 

  10. Yadav K, Dwivedi Y, Jaggi N (2015) Structural and optical properties of Ni doped ZnSe nanoparticles. J Lumin 158:181–187

    Article  Google Scholar 

  11. Caruso F, Caruso RA, Möhwald H (1998) Nanoengineering of inorganic and hybrid hollow spheres by colloidal templating. Science 282:1111–1114

    Article  Google Scholar 

  12. Marandi M, Hajisalem G, Taghavinia N, Houshiar M (2011) Fast two-step microwave-activated synthesis of Mn doped ZnS nanocrystals: comparison of the luminescence and doping process with thermochemical approach. J Lumin 131:721–726

    Article  Google Scholar 

  13. Oldfield G, Ung T, Mulvaney P (2000) Au@SnO2 core–shell nanocapacitors. Adv Mater 12:1519–1522

    Article  Google Scholar 

  14. Deng D, Yu J, Pan Y (2006) Water-soluble CdSe and CdSe/CdS nanocrystals: a greener synthetic route. J Colloid Interface Sci 299:225–232

    Article  Google Scholar 

  15. Fan K, Liao C, Xu R, Zhang H, Cui Y, Zhang J (2015) Effect of shell thickness on electrochemical property of wurtzite CdSe/CdS core/shell nanocrystals. Chem Phys Lett 633:1–5

    Article  Google Scholar 

  16. Ibnaouf KH, Prasad S, Salhi Al, Hamdan A, Zaman MB, El Mir L (2014) Influence of the solvent environments on the spectral features of CdSe quantum dots with and without ZnS shell. J Lumin 149:369–373

    Article  Google Scholar 

  17. Mathew S, Bhardwaj BS, Saran AD, Radhakrishnan P, Nampoori VPN, Vallabhan CPG, Bellare JR (2015) Effect of ZnS shell on optical properties of CdSe-ZnS core-shell quantum dots. Opt Mater 39:46–51

    Article  Google Scholar 

  18. Nguyen TL, Michael M, Mulvaney P (2014) Synthesis of highly crystalline CdSe@ZnO nanocrystals via monolayer-by-monolayer epitaxial shell deposition. Chem Mater 26:4274–4279

    Article  Google Scholar 

  19. Koteeswara Reddy N, Devika M, Shpaisman N, Ben-Ishai M, Patolsky F (2011) Synthesis and cathodoluminescence properties of CdSe/ZnO hierarchical nanostructures. J Mater Chem 21:3858–3864

    Article  Google Scholar 

  20. Ding SN, Jin Y, Chen X, Bao N (2015) Tunable electrochemiluminescence of CdSe@ZnSe quantum dots by adjusting ZnSe shell thickness. Electrochem Commun 55:30–33

    Article  Google Scholar 

  21. Tripathi SK, Sharma M (2013) Synthesis and optical study of green light emitting polymer coated CdSe/ZnSe core/shell nanocrystals. Mater Res Bull 48:1837–1844

    Article  Google Scholar 

  22. Hao E, Sun H, Zhou Z, Liu J, Yang B, Shen J (1999) Synthesis and optical properties of CdSe and CdSe/CdS nanoparticles. Chem Mater 11:3096–3102

    Article  Google Scholar 

  23. Dabbousi BO, Rodriguez-Viejo J, Mikulec FV, Heine JR, Mattoussi H, Ober R, Jensen KF, Bawendi MG (1997) (CdSe)ZnS core−shell quantum dots: synthesis and characterization of a size series of highly luminescent nanocrystallites. J Phys Chem B 101:9463–9475

    Article  Google Scholar 

  24. Wang ZL (2000) Characterizing the structure and properties of individual wire-like nanoentities. Adv Mater 12:1295–1298

    Article  Google Scholar 

  25. Duan XF, Huang Y, Agarwal R, Lieber CM (2003) Single-nanowire electrically driven lasers. Nature 421:241–245

    Article  Google Scholar 

  26. Kortan AR, Hull R, Opila RL, Bawendi MG, Steigerwald ML, Carroll PJ, Brus LE (1990) Nucleation and growth of cadmium selendie on zinc sulfide quantum crystallite seeds, and vice versa, in inverse micelle media. J Am Chem Soc 112:1327–1332

    Article  Google Scholar 

  27. Hines MA, Guyot-sionnest P (1996) Synthesis and characterization of strongly luminescing ZnS-capped CdSe nanocrystals. J Phys Chem 100:468–471

    Article  Google Scholar 

  28. Tian Y, Newton T, Kotov NA, Guldi DM, Fendler JH (1996) Coupled composite CdS−CdSe and core−shell types of (CdS)CdSe and (CdSe)CdS nanoparticles. J Phys Chem 100:8927–8939

    Article  Google Scholar 

  29. Peng X, Schalamp MC, Kadavanich AV, Alvisatos AP (1997) Epitaxial growth of highly luminescent CdSe/CdS core/shell nanocrystals with photostability and electronic accessibility. J Am Chem Soc 119:7019–7029

    Article  Google Scholar 

  30. Danek M, Jensen KF, Murray CB, Bawendi MG (1996) Synthesis of luminescent thin-film CdSe/ZnSe quantum dot composites using CdSe quantum dots passivated with an overlayer of ZnSe. Chem Mater 8:173–180

    Article  Google Scholar 

  31. Spanhel L, Haase M, Weller H, Henglein A (1987) Photochemistry of colloidal semiconductors. 20. Surface modification and stability of strong luminescing CdS particles. J Am Chem Soc 109:5649–5655

    Article  Google Scholar 

  32. Mews A, Eychmuller A, Giersig M, Schooss D, Weller H (1994) Preparation, characterization, and photophysics of the quantum dot quantum well system cadmium sulfide/mercury sulfide/cadmium sulfide. J Phys Chem 98:934–941

    Article  Google Scholar 

  33. Kamalov VF, Little R, Logunov SL, El-sayed MA (1996) Picosecond electronic relaxation in CdS/HgS/CdS quantum dot quantum well semiconductor nanoparticles. J Phys Chem 100:6381–6384

    Article  Google Scholar 

  34. Behboudnia M, Azizianekalandaragh Y (2007) Synthesis and characterization of CdSe semiconductor nanoparticles by ultrasonic irradiation. Mater Sci Eng B 138:65–68

    Article  Google Scholar 

  35. Rogach AL, Kornowski A, Gao MY, Eychmüller A, Weller H (1999) Synthesis and characterization of a size series of extremely small thiol-stabilized CdSe nanocrystals. J Phys Chem B 103:3065–3069

    Article  Google Scholar 

  36. Xie Y, Xu JJ, Yu JS, Chen HY (2004) Synthesis and characterization of water-soluble CdSe/ZnS core-shell nanoparticles. Chin J Inorg Chem 20:663–667

    Google Scholar 

  37. Lin YW, Hsieh MM, Liu CP, Chang HT (2005) Photoassisted synthesis of cdse and core−shell CdSe/CdS quantum dots. Langmuir 21:728–734

    Article  Google Scholar 

  38. Warren BE (1969) X-ray diffraction. Courier Corporation.

  39. Chen G, Zhang W, Zhong X (2010) Single-source precursor route for overcoating CdS and ZnS shells around CdSe core nanocrystals. Front Chem Chin 5:214–220

    Article  Google Scholar 

  40. Bornstein L, Madelung O (1987) Numerical data and functional relationships in science and technology. Springer, Berlin, 22, p 204

    Google Scholar 

  41. Kayanuma Y (1988) Quantum-size effects of interacting electrons and holes in semiconductor microcrystals with spherical shape. Phys Rev B 38:9797–9805

    Article  Google Scholar 

  42. Hasselbarth A, Eychmuller A, Eichberger R, Giersig M, Mews A, Weller H (1997) Chemistry and photophysics of mixed CdS/HgS colloids. J Phys Chem 97:5333–5340

    Article  Google Scholar 

  43. Liu SM, Guo HQ, Zhang ZH, Li R, Chen W, Wang ZG (2000) Characterization of CdSe and CdSe/CdS core/shell nanoclusters synthesized in aqueous solution. Physica E Low Dimens Syst Nanostruct 8:174–178

    Article  Google Scholar 

  44. Brus LE (1986) Zero-dimensional “excitons” in semiconductor clusters. J Quant Electron 22:1909–1914

    Article  Google Scholar 

  45. Chowdhury S, Ahmed GA, Mohanta D, Dolui SK, Avasthi DK, Choudhury A (2005) Luminescence study of bare and coated CdS quantumdots: effect of SHI irradiation and ageing. Nucl Instr Meth Phys Res 240:690–696

    Article  Google Scholar 

  46. Mekis I, Talapin DV, Kornowski A, Haase M, Weller H (2003) One-pot synthesis of highly luminescent CdSe/CdS core−shell nanocrystals via organometallic and “Greener” chemical approaches. J Phys Chem B 107:7454–7462

    Article  Google Scholar 

  47. Reiss P, Bleuse J, Pron A (2002) Highly luminescent CdSe/ZnSe core/shell nanocrystals of low size dispersion. Nano Lett 2:781–784

    Article  Google Scholar 

  48. Talapin DV, Koeppe R, Gotzinger S, Kornowski A, Lupton JM, Rogach AL, Benson O, Feldmann J, Weller H (2003) Highly emissive colloidal CdSe/CdS heterostructures of mixed dimensionality. Nano Lett 3:1677–1681

    Article  Google Scholar 

  49. Li JJ, Wang YA, Guo W, Keay JC, Mishima TD, Johnson MB, Peng X (2003) Large-scale synthesis of nearly monodisperse CdSe/CdS core/shell nanocrystals using air-stable reagents via successive ion layer adsorption and reaction. J Am Chem Soc 125:12567–12575

    Article  Google Scholar 

  50. Fang Z, Liu L, Wang J, Zhong X (2009) Depositing a ZnxCd1−xS shell around CdSe core nanocrystals via a noninjection approach in aqueous media. J Phys Chem C 113:4301–4306

    Article  Google Scholar 

  51. Bae WK, Char K, Hur H, Lee S (2008) Single-step synthesis of quantum dots with chemical composition gradients. Chem Mater 20:531–539

    Article  Google Scholar 

  52. Yang P, Lu MK, Song CF, Xu D, Yuan DR, Cheng XF, Zhou GJ (2002) Luminescence of Cu2+ and In3+ co-activated ZnS nanoparticles. Opt Mater 20:141–145

    Article  Google Scholar 

  53. Mahler B, Lequeux N, Dubertret B (2010) Ligand-controlled polytypism of thick-shell CdSe/CdS nanocrystals. J Am Chem Soc 132:953–959

    Article  Google Scholar 

  54. Talapin DV, Mekis I, Gotzinger S, Kornowski A, Benson O, Weller H (2004) CdSe/CdS/ZnS and CdSe/ZnSe/ZnS core-shell-shell nanocrystals. J Phys Chem B 108:18826–18831

    Article  Google Scholar 

  55. Martin TP, Schaber H (1982) Matrix isolated II-VI molecules: sulfides of Mg, Ca, Sr, Zn and Cd. Spectrochim Acta Mol Biomol Spectrosc 38:655–660

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Thirugnanam.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

The original version of this article was revised: The minor textual correction in Section 2.4 and the legend in x-axis has been misspelled as Wavelemgth instead of Wavelength in Fig. 5. These have been corrected in this version.

An erratum to this article is available at http://dx.doi.org/10.1007/s10971-017-4324-0.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thirugnanam, N., Govindarajan, D., Dinesh, S. et al. Synthesis, structural, optical and morphological properties of CdSe:Zn/CdS core–shell nanoparticles. J Sol-Gel Sci Technol 82, 109–118 (2017). https://doi.org/10.1007/s10971-016-4299-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-016-4299-2

Keywords

Navigation