Skip to main content

Advertisement

Log in

Enhanced catalytic and antibacterial activity of nanocasted mesoporous silver monoliths: kinetic and thermodynamic studies

  • Original Paper: Nano- and macroporous materials (aerogels, xerogels, cryogels, etc.)
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Use of low-cost heterogeneous renewable catalysts are essential for effective removal of chemical contaminants like 4-nitrophenol (4-NP) from water bodies. In the present study, for the first time use of surface enhanced (14 m2/g) nanocasted mesoporous silver monolith (AgM) through impregnation into silica monoliths (prepared by sol–gel method) has been demonstrated for its catalytic and antibacterial activity. Highly efficient catalytic reduction rate (2.43 min−1) of 4-NP to 4- aminophenol (4-AP) has been demonstrated using 0.2 gL−1 of AgM catalyst. Enhancement of reduction rate is also observed with increase in temperature (from 25 to 40 °C). Removal of microbial contamination from drinking water is also a prime concern for water purification. Mesoporous AgM shows effective antimicrobial activity against gram negative (E. coli) and gram positive (B. subtilis) bacteria with IC50 values of 75.86 ± 0.173 and 74.56 ± 0.103 respectively at 24 h of incubation.

Graphical Abstract

Use of low-cost renewable catalysts is essential for effective removal of a chemical contaminant like 4-nitrophenol (4-NP) from water bodies. Nanocasted mesoporous silver monolith (AgM) synthesized via impregnation into silica monoliths (prepared by sol-gel method) has been demonstrated for its catalytic and antibacterial activity. Mesoporous AgM also showed effective antimicrobial activity against gram negative and gram positive bacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Li YP, Cao HB, Liu CM, Zhang Y (2007) J Hazard Mater 148:158–163

    Article  Google Scholar 

  2. Gupta VK, Atar N, Yola ML, Ustundag Z, Uzun L (2014) Water Res 48:210–217

    Article  Google Scholar 

  3. Khan S, Chao C, Waqas M, Arp HPH, Zhu YG (2013) Environ Sci Technol 47:8624–8632

    Article  Google Scholar 

  4. Mittal A, Mittal J, Malviya A, Gupta VK (2009) J Colloid Interf Sci 340:16–26

    Article  Google Scholar 

  5. Armbrüster M, Schlögl R, Grin Y (2014) Sci Technol Adv Mater 15:034803

    Article  Google Scholar 

  6. Woo YT, Lai DY (2001) Aromatic amino and nitro-amino compounds and their halogenated derivatives. In: E Bingham, B. Cohrssen (eds), Patty’s toxicology. Wiley, New York

    Google Scholar 

  7. Mitchell SC, Waring RH (2000) Aminophenols. In: B. Elvers, S. Hawkins, W. Russey (eds), Ullmann’s encyclopedia of industrial chemistry. Wiley, Weinheim

    Google Scholar 

  8. Panigrahi S, Basu S, Praharaj S, Pande S, Jana S, Pal A, Ghosh SK, Pal T (2007) J Phys Chem C 111:4596–4605

    Article  Google Scholar 

  9. Pradhan N, Pal A, Pal T (2002) Colloids Surf A 196:247–257

    Article  Google Scholar 

  10. Fedorczyk A, Ratajczak J, Kuzmych O, Skompska M (2015) J Solid State Electrochem 19(9):2849–2858

    Article  Google Scholar 

  11. Tang S, Vongehr S, Meng X (2010) J Phys Chem C 114:977–982

    Article  Google Scholar 

  12. Saha S, Pal A, Kundu S, Basu S, Pal T (2010) Langmuir 26:2885–2893

    Article  Google Scholar 

  13. Naikoo GA, Dar RA, Khan F (2014) J Mater Chem A 2:11792–11798

    Article  Google Scholar 

  14. Dar RA, Naikoo GA, Kalambate PK, Giri L, Khan F, Karna SP, Srivastava AK (2015) Electrochem Acta 163:196–203

    Article  Google Scholar 

  15. Xia BY, Ng WT, Wu HB, Wang X, Lou XW (2012) Angew Chem Int Ed 51:7213

    Article  Google Scholar 

  16. Wei Y, Liu J, Zhao Z, Duan A, Jiang G, Xu C, Gao J, He H, Wang X (2011) Energy Environ Sci 4:2959–2970

    Article  Google Scholar 

  17. Yang H, Liu Y, Shen Q, Chen L, You W, Wang X, Sheng J (2012) J Mater Chem 22:24132–24138

    Article  Google Scholar 

  18. Kim KJ, Sung WS, Suh BK, Moon SK, Choi JS, Kim JG, Lee DG (2009) Biometals 22:235–242

    Article  Google Scholar 

  19. Petrochenko PE, Skoog SA, Zhang Q, Comstock DJ, Elam JW, Goering PL, Narayan RJ (2013) Biomatter, doi:e25528-1–e25528-7

  20. Subhankari I, Nayak PL (2013) World J Nano Sci Technol 2:10–13

    Google Scholar 

  21. Thomas V, Yallapu MM, Sreedhar B, Bajpai SK (2007) J Colloid Interface Sci 315:389–395

    Article  Google Scholar 

  22. Sheikh MUD, Naikoo GA, Thomas M, Bano M, Khan F (2015) J Sol-Gel Sci Technol 76:572–581

    Article  Google Scholar 

  23. Khan F, Mann S (2009) J Phys Chem C 113:19871–19874

    Article  Google Scholar 

  24. Tian Y, Qi J, Zhang W, Cai Q, Jiang X (2014) ACS Appl Mater Interfaces 6:12038–12045

    Article  Google Scholar 

  25. Netzer NL, Gunawidjaja R, Hiemstra M, Zhang Q, Tsukruk VV, Jiang C (2009) ACS Nano 3:1795–1802

    Article  Google Scholar 

  26. Smått J-H, Schunk SA, Lindén M (2003) Chem Mater 15:2354

    Article  Google Scholar 

  27. Shameli K, Ahmad M, Yunus WMZW, Rustaiyan A, Ibrahim NA, Zargar M, Abdollahi Y (2010) Int J Nanomed 5:875–887

    Article  Google Scholar 

  28. Smatt J-H, Sayler FM, Grano AJ, Bakker MG (2012) Adv Eng Mater. doi:10.1002/adem.201100355

  29. Guo P, Tang L, Deng Y, Ma L, Tan S, Tang J, Zeng G, Huang B, Dong H, Zhang Y, Zhou Y (2016) J Colloid Interface Sci 469:78–85

    Article  Google Scholar 

  30. Sharma M, Mishra A, Kumar V, Basu S (2016) NANO: Brief Reports and Reviews 11(4):1650046

    Article  Google Scholar 

  31. Rothenberg G (2008) Catalysis: Concepts and Green Application. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, p 11

    Book  Google Scholar 

  32. Ruparelia JP, Chatterjee AK, Duttagupta SP, Mukherji S (2008) Acta Biomater 4(3):707–716

    Article  Google Scholar 

Download references

Acknowledgments

SB is thankful to DAE/BRNS (Grant no: 34/14/63/2014) and DST (Grant no: SB/FT/CS-178/2013) for providing financial support to run the experiments. MS is thankful to DAE/BRNS (Grant no: 34/14/63/2014) for fellowship. AM is supported by a fellowship from DST (Grant no: SB/FT/CS-178/2013). Authors are also thankful to Thapar University for providing seed money and instrumental facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soumen Basu.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, M., Mishra, A., Mehta, A. et al. Enhanced catalytic and antibacterial activity of nanocasted mesoporous silver monoliths: kinetic and thermodynamic studies. J Sol-Gel Sci Technol 81, 704–710 (2017). https://doi.org/10.1007/s10971-016-4260-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-016-4260-4

Keywords

Navigation