Skip to main content
Log in

Influence of preparation conditions on morphology of in-situ synthesized hollow ruthenium-silica composite spheres for hydrolytic dehydrogenation of ammonia borane

  • Original Paper: Nano-structured materials (particles, fibers, colloids, composites, etc.)
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Hollow ruthenium-silica composite spheres were synthesized from spherical ruthenium-silica composite particles prepared by sol-gel method, followed by in-situ activation in an aqueous sodium borohydride (NaBH4)/ammonia borane (NH3BH3) solutions. Through the preparation of the spherical particles, we investigated influence of promotors (L(+)-arginine and ammonia) on the sol-gel reaction in terms of the morphology of the spherical particle precursors and the hollow spheres. Average particle size of the precursors drastically increased by increasing the amount of L(+)-arginine used, though this also increased the solution pH. Average particle size of the precursors did not significantly increase when concentration of ammonia increased. These results indicate that L(+)-arginine promotes particle growth more effectively than ammonia. The spherical particles prepared with L(+)-arginine shows a higher hydrogen evolution rate and a higher quantity of evolved hydrogen from the aqueous NaBH4/NH3BH3 solution than the spherical particles prepared with ammonia. The spherical particles resulting from in-situ synthesis with sizes ranging from 100 to 950 nm possess hollow voids. UV-Vis spectra of the in-situ synthesized samples indicated that the activity depends on the reducibility of the active ruthenium species. The ruthenium species included in the sample prepared using L(+)-arginine was more metallic than that included in the sample prepared using ammonia.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Yang D, Ma P, Hou Z, Cheng Z, Li C, Lin J (2015) Chem Soc Rev 44:1416–1448

    Article  Google Scholar 

  2. Wang Y, Chen D, Yin X, Xu P, Wu F, He M (2015) ACS Appl Mater Interfaces 7:26226–26234

    Article  Google Scholar 

  3. Ravat V, Nongwe I, Meijboom R, Bepete G, Coville NJ (2013) J Catal 205:36–45

    Article  Google Scholar 

  4. González-Garcia T, Margola T, Silvagni A, Mancin F, Rastrelli F (2016) Angew Chem Int Ed 55:2733–2737

    Article  Google Scholar 

  5. Zhang HC, Huang H, Liu Y, Han X, Ma Z, Zhang LL, Li HT, Kang ZH (2012) J Mater Chem 22:20182–20185

    Article  Google Scholar 

  6. Chen W, Xue M, Shea KJ, Meng Z, Yan Z, Wang Z, Xue F, Qu F (2015) J Biophoto 8:838–845

    Article  Google Scholar 

  7. Wang X, Liao M, Zhong Y, Zheng JY, Tian W, Zhai T, Zhi C, Ma Y, Yao J, Bando Y, Golberg D (2012) Adv Mater 24:3421–3425

    Article  Google Scholar 

  8. Lou XW, Archer LA (2008) Adv Mater 20:1853–1858

    Article  Google Scholar 

  9. Sun XM, Li YD (2005) J Colloid Interface Sci 291:7–12

    Article  Google Scholar 

  10. Wang YH, Chen PL, Liu MH (2008) Nanotechnology 19:045607

    Article  Google Scholar 

  11. Umegaki T, Xu Q, Kojima Y (2014) Trans Mater Res Soc Jpn 38:459–462

    Article  Google Scholar 

  12. Umegaki T, Xu Q, Kojima Y (2014) J Jpn Inst Ener 93:323–327

    Article  Google Scholar 

  13. Yokoi T, Sakamoto Y, Terasaki O, Kubota Y, Okubo T, Tatsumi T (2006) J Am Chem Soc 128:13664–13665

    Article  Google Scholar 

  14. Umegaki T, Xu Q, Kojima Y (2013) J Alloys Compd 580:S313–S316

    Article  Google Scholar 

  15. Hamilton CW, Baker RT, Staubitz A, Manners I (2009) Chem Soc Rev 38:279–293

    Article  Google Scholar 

  16. Satyapal S, Petrovic J, Read C, Thomas G, Ordaz G (2007) Catal Today 120:246–256

    Article  Google Scholar 

  17. Xu Q, Chandra M (2006) J Power Sources 163:364–370

    Article  Google Scholar 

  18. Xu Q, Chandra M (2007) J Power Sources 168:135–142

    Article  Google Scholar 

  19. Rachiero GP, Demirci UB, Miele P (2011) Catal Today 170:85–92

    Article  Google Scholar 

  20. Durap F, Zahmakıran M, Özkar S (2009) Int J Hydrogen Energy 34:7223–7230

    Article  Google Scholar 

  21. Liang H, Chen G, Desinan S, Rosei R, Rosei F, Ma D (2012) Int J Hydrogen Energy 37:17921–17927

    Article  Google Scholar 

  22. Akbayrak S, Tanyıldızı S, Morkan I, Özkar S (2014) Int J Hydrogen Energy 39:9628–9637

    Article  Google Scholar 

  23. Gao Y, Kuncheria JK, Jenkins HA, Puddephatt RJ, Yap GP (2000) J Chem Soc Dalton Trans 18:3212–3217

  24. Lopez T, Bosch P, Asomoza M, Gomez R (1992) J Catal 133:247–259

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tetsuo Umegaki.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Umegaki, T., Enomoto, R., Xu, Q. et al. Influence of preparation conditions on morphology of in-situ synthesized hollow ruthenium-silica composite spheres for hydrolytic dehydrogenation of ammonia borane. J Sol-Gel Sci Technol 81, 711–716 (2017). https://doi.org/10.1007/s10971-016-4234-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-016-4234-6

Keywords

Navigation