Skip to main content

Advertisement

Log in

The performance of CdS quantum dot sensitized ZnO nanorod-based solar cell

  • Original Paper: Sol-gel and hybrid materials for energy, environment and building applications
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

ZnO nanorods (NRs) have been grown by sol–gel dip-coating method on FTO glass plates. The CdS quantum dots (QDs) were deposited on the as-prepared ZnO NRs by successive ionic layer adsorption and reaction method. The structural characteristics of the ZnO NRs, CdS QD and CdS QD-sensitized ZnO NRs films have been studied using X-ray diffraction method. ZnO NRs exhibit hexagonal structure. CdS QD had a size of 2 nm. The FESEM image showed the presence of CdS quantum dots on the ZnO NRs. From the optical studies, the optical band gap energy of ZnO thin film was found to be 3.26 eV and the band gap energy of CdS quantum dot was observed to be 2.1 eV. The optical absorption edge was found at 370 nm for ZnO NRs and at 460 nm for the CdS QD. The PL spectra of the prepared ZnO NRs and CdS QDs sample exhibit a strong emission peak at 395 and 688 nm. Solar cells have been fabricated using the CdS quantum dot sensitized ZnO nanorods, and the efficiency of the cell was 1.3 %.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Ohshima E, Ogino H, Niikura I, Maeda K, Sato M, Ito M, Fukuda T (2004) J Cryst Growth 260(1):166–170

    Article  Google Scholar 

  2. Yang TL, Zhang DH, Ma J, Ma HL, Chen Y (1998) Thin Solid Films 326(1):60–62

    Article  Google Scholar 

  3. Sang B, Yamada A, Konagai M (1998) Jpn J Appl Phys 37(2B):L206

    Article  Google Scholar 

  4. Cordaro JF, Shim Y, May JE (1986) J Appl Phys 60(12):4186–4190

    Article  Google Scholar 

  5. Verardi P, Nastase N, Gherasim C, Ghica C, Dinescu M, Dinu R, Flueraru C (1999) J Cryst Growth 197(3):523–528

    Article  Google Scholar 

  6. Hingorani S, Pillai V, Kumar P, Multani MS, Shah DO (1993) Mater Res Bull 28(12):1303–1310

    Article  Google Scholar 

  7. Raja M, Muthukumarasamy N, Velauthapillai D, Balasundaraprabhu R, Agilan S, Senthil TS (2014) Sol Energy 106:129–135

    Article  Google Scholar 

  8. Senthil TS, Kim A-Y, Muthukumarasamy N, Kang M (2013) J Nanopart Res 15(9):1–9

    Article  Google Scholar 

  9. Jiaqiang X, Yuping C, Daoyong C, Jianian S (2006) Sens Actuators B Chem 113(1):526–531

    Article  Google Scholar 

  10. Howdyshell M (2007) Structure of ZnO nanorods using X-ray diffraction. No. SLAC-TN-07-024

  11. Water W, Chen S-E (2009) Sens Actuators B Chem 136(2):371–375

    Article  Google Scholar 

  12. Huang N, Zhu MW, Gao LJ, Gong J, Sun C, Jiang X (2011) Appl Surf Sci 257(14):6026–6033

    Article  Google Scholar 

  13. Lee JP, Yoo B, Suresh T, Kang MS, Vital R, Kim KJ (2009) Electrochim Acta 54:4365

    Article  Google Scholar 

  14. Ranjitha A, Muthukumarasamy N, Thambidurai M, Velauthapillai D, Balasundraprabhu R, Agilan S (2013) J Mater Sci Mater Electron 24:3014–3020

    Article  Google Scholar 

  15. Zhu G, Pan L, Xu T, Sun Z (2011) J Electroanal Chem 659:205–208

    Article  Google Scholar 

  16. Senthil TS, Muthukumarasamy N, Kang M (2013) Opt Eng 52(7):075102

    Article  Google Scholar 

  17. Jung SW, Park M-A, Kim J-H, Kim H, Choi C-J, Kang SH, Ahn K-S (2013) Curr Appl Phys 13:1532–1536

    Article  Google Scholar 

  18. Suresh S (2013) J Cryst Process Technol 3(03):87

    Article  Google Scholar 

  19. Lin B, Fu Z, Jia Y (2001) Appl Phys Lett 79(7):943–945

    Article  Google Scholar 

  20. Liqiang J, Yichun Q, Baiqi W, Shudan L, Baojiang J, Libin Y, Wei F, Honggang F, Jiazhong S (2006) Sol Energy Mater Sol Cells 90(12):1773–1787

    Article  Google Scholar 

  21. Thambidurai M, Muthukumarasamy N, Arul NS, Agilan S, Balasundaraprabhu R (2011) J Nanopart Res 13(8):3267–3273

    Article  Google Scholar 

  22. Raja M, Muthukumarasamy N, Velauthapillai D, Balasundraprabhu R, Agilan S, Senthil T (2014) J Mater Sci Mater Electron 25(11):5035–5040

    Article  Google Scholar 

  23. Patil S, Singh A (2011) Electrochim Acta 56(16):5693–5701

    Article  Google Scholar 

  24. Qi J, Liu W, Biswas C, Zhang G, Sun L, Wang Z, Hu X, Zhang Y (2015) Opt Commun 349:198–202

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank CSIR (Council of Scientific and Industrial Research), India for providing financial support to carry out this research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Vinoth Pandi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vinoth Pandi, D., Muthukumarasamy, N., Agilan, S. et al. The performance of CdS quantum dot sensitized ZnO nanorod-based solar cell. J Sol-Gel Sci Technol 80, 867–872 (2016). https://doi.org/10.1007/s10971-016-4178-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-016-4178-x

Keywords

Navigation