Skip to main content
Log in

High-temperature oxidation resistance of sol–gel-derived ZrO2/(Al2O3–Y2O3) coating on titanium alloy

  • Original Paper: Functional coatings, thin films and membranes (including deposition techniques)
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

ZrO2/(Al2O3–Y2O3) composite coating was deposited on Ti-6.5Al-3.5Mo-15Zr-0.3Si (at.%) alloy via sol–gel spin coating with the hope to improve its high-temperature oxidation resistance. The as-prepared coating was dense, uniform and crack-free. Isothermal and cyclic oxidation tests of coated and uncoated specimens at 700 °C for 100 h were performed to evaluate its effect on oxidation behavior of the alloy. The results indicated that oxidation resistance and spallation resistance for coated specimen have been remarkably improved, thickness of oxide scale of coated specimen was thinner than that of uncoated one and the scale was composed of deposited Al2O3 outermost layer, a thin TiO2 middle layer and a mixture of Al2O3 and ZrO2 thick innermost layer. The mechanism of the coating having beneficial effects could be attributed to the inhibition of the inward diffusion of O and outward diffusion of Ti and Al, lower thermal stress and good adhesion between the coating and substrate.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Clemens H, Kestler H (2000) Adv Eng Mater 2:551–570

    Article  Google Scholar 

  2. Cao R, Zhu H, Chen JH et al (2008) J Mater Sci 43:299–311

    Article  Google Scholar 

  3. Kothari K, Radhakrishnan R, Wereley NM (2012) Prog Aerosp Sci 55:1–16

    Article  Google Scholar 

  4. Chen L, Paulitsch J, Du Y et al (2012) Surf Coat Technol 206:2954–2960

    Article  Google Scholar 

  5. Varma SK, Chan A, Mahapatra BN (2001) Oxid Met 55:423–435

    Article  Google Scholar 

  6. Teng LD, Nakatomi D, Seetharaman S (2007) Metall Mater Trans B 38:477

    Article  Google Scholar 

  7. Yamaguchi M, Inui H, Ito K (2000) Acta Mater 48:307

    Article  Google Scholar 

  8. Shida Y, Anada H (1996) Oxid Met 45:197–219

    Article  Google Scholar 

  9. Becker S, Rahmel A, Schorr M et al (1992) Oxid Met 38:425–464

    Article  Google Scholar 

  10. Wallace TA, Clark RK, Wiedemann KE et al (1992) Oxid Met 37:111–124

    Article  Google Scholar 

  11. Tang ZL, Wang FH, Wu WT (2000) Mater Sci Eng, A 276:70–75

    Article  Google Scholar 

  12. Li ZW, Gao W, He YD (2001) Scr Mater 45:1099

    Article  Google Scholar 

  13. Jung HG, Jung DJ, Kim KY (2002) Surf Coat Technol 154:75

    Article  Google Scholar 

  14. Hovsepian PE, Ehiasarian AP, Braun R et al (2010) Surf Coat Technol 204:2702

    Article  Google Scholar 

  15. Oechsner M, Hillman C, Lange F (1996) J Am Ceram Soc 79:1834–1838

    Article  Google Scholar 

  16. Chu MS, Wu SK (2004) Surf Coat Technol 179:257–264

    Article  Google Scholar 

  17. Li H, Liang K, Mei L et al (2001) Mater Lett 51:320–324

    Article  Google Scholar 

  18. Zhang XJ, Zhao SY, Gao CX et al (2009) J Sol Gel Sci Technol 49:221–227

    Article  Google Scholar 

  19. Zhang XJ, Ren BY, Gao CX et al (2011) J Sol Gel Sci Technol 59:561–568

    Article  Google Scholar 

  20. Zhang XJ, Li Q, Zhao SY et al (2008) Appl Surf Sci 255:1860–1864

    Article  Google Scholar 

  21. Zhang XJ, Li Q, Zhao SY et al (2008) J Sol Gel Sci Technol 47:107–114

    Article  Google Scholar 

  22. Huang JF, Zeng XR, Li HJ et al (2005) Surf Coat Technol 190:255

    Article  Google Scholar 

  23. Li X, Liu H, Wang JY et al (2004) J Am Ceram Soc 87:2288

    Article  Google Scholar 

  24. Wagner C (1952) J Electrochem Soc 99:369

    Article  Google Scholar 

  25. Pint BA (1996) Oxid Met 45:1–4

    Article  Google Scholar 

  26. Evans HE (1989) Mater Sci Eng, A 120:139–146

    Article  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the Chinese National Natural Science Foundation (Grant No. 51371097) and A Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. B. Yao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yao, Y.B., Yao, Z.J. & Zhou, Y.J. High-temperature oxidation resistance of sol–gel-derived ZrO2/(Al2O3–Y2O3) coating on titanium alloy. J Sol-Gel Sci Technol 80, 612–618 (2016). https://doi.org/10.1007/s10971-016-4172-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-016-4172-3

Keywords

Navigation