Skip to main content
Log in

Preparation by sol–gel method and characterization of Zn-doped LaCrO3 perovskite

  • Original Paper: Characterization methods of sol-gel and hybrid materials
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

A new perovskite solid solution system of LaCr1−xZnxO3 (0 ≤ x ≤ 0.3) was synthesized through sol–gel method. The effect of Zn doping on the lanthanum chromite prepared was investigated. Thermal decomposition of the dried gel of LaCr0.8Zn0.2O3 was characterized by TG/DTA thermal analysis. The synthesized powders were characterized by means of X-ray diffraction (XRD), infrared spectra (IR), and scanning microscope (SEM). Finally, electrical properties were characterized by the standard four-probe technique. From the preceding analysis, it can be shown that the amorphous powders crystallize in the orthorhombic structure with Pbnm (62) space group (JCPDS card 24-1016), where the crystallite size ranges from 29.46 to 53.21 nm. The oxides LaCr1−xZnxO3 (0 ≤ x ≤ 0.3) have the comportment of semiconductors in the working temperature range 25–350 °C. The electrical conductivity increases with the degree of substitution x, whereas the maximum electrical conductivity obtained is ~13.8 S/cm at 350 °C for LaCr0.3Zn0.3O3 where the electrical conduction occurs by a thermal activated of small polarons hopping. At higher temperature, the electrical behavior is similar to that of pure metal.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Ishihara T (2009) Perovskite oxide for solid oxide fuel cells. Springer, New York

    Book  Google Scholar 

  2. Chakraborty A, Basu RN, Maiti HS (2000) Mater Lett 45:162–166

    Article  Google Scholar 

  3. Rivas-Vázquez LP, Rendón-Angeles JC, Rodríguez-Galicia JL, Gutiérrez-Chavarria CA, Zhu KJ, Yanagisawa K (2006) J Eur Ceram Soc 26:81–88

    Article  Google Scholar 

  4. Onuma S, Miyoshi S, Yashiro K, Kaimai A, Kawamura K, Nigara Y, Kawada T, Mizusaki J, Sakai N, Yokokawa H (2003) J Solid State Chem 170:68–74

    Article  Google Scholar 

  5. Mori M, Yamamoto T, Itoh H, Watanabe T (1997) J Mater Sci 32:2423–2431

    Article  Google Scholar 

  6. Sfeir J, Van Herle J, McEvoy AJ (1999) J Eur Ceram Soc 19:897–902

    Article  Google Scholar 

  7. Adaika K, Omari M (2015) J Sol–Gel Sci Technol 75:298–304

    Article  Google Scholar 

  8. Larsen PH, Hendriksen PV, Mogensen M (1997) J Therm Anal Calorim 49:1263–1275

    Article  Google Scholar 

  9. Oishi M, Yashiro K, Hong JO, Nigara Y, Kawada T, Mizusaki J (2007) Solid State Ionics 178:307–312

    Article  Google Scholar 

  10. Seyfi B, Baghalha M, Kazemian H (2009) Chem Eng J 148:306–311

    Article  Google Scholar 

  11. Rida K, Benabbas A, Bouremmad F, Peña MA, Martínez-Arias A (2006) Catal Comm 7:963–968

    Article  Google Scholar 

  12. Onuma S, Miyoshi S, Yashiro K, Kaimai A, Kawamura K, Nigara Y, Kawada T, Mizusaki J, Sakai N, Yokokawa H (2003) J Solid State Chem 170:68–74

    Article  Google Scholar 

  13. Shu J, Kaliaguine S (1998) Appl Catal B-Environ 16:303–308

    Article  Google Scholar 

  14. Labhsetwar NK, Watanabe A, Mitsuhashi T (2003) Appl Catal B-Environ 40:21–30

    Article  Google Scholar 

  15. Royer S, Berube F, Kaliaguine S (2005) Appl Catal A-Gen 282:273–284

    Article  Google Scholar 

  16. Nithya VD, Immanuel RJ, Senthilkumar ST, Sanjeeviraja C, Perelshtein I, Zitoun D, Selvan RK (2012) Mat Res Bull 47:1861–1868

    Article  Google Scholar 

  17. Ivanova S, Senyshyn A, Zhecheva E, Tenchev K, Stoyanova R, Fuessb H (2010) J Solid State Chem 183:940–950

    Article  Google Scholar 

  18. Samat AA, Abdullah NA, Ishak MAM, Osman N (2012) World Acad Sc Eng Techol. 6(10):951–955

    Google Scholar 

  19. Hsiang HI, Yen FS, Chang YH (1996) J Mate Sci 31:2417–2424

    Article  Google Scholar 

  20. Diafi M, Omari M (2012) Bol Soc Esp Ceram Vidr 51(6):337–342

    Article  Google Scholar 

  21. Yazdanbakhsh M, Tavakkoli H, Hosseini SM (2011) S Afr J Chem 64:71–78

    Google Scholar 

  22. Baranauskas A, Jasaitis D, Kareiva A (2002) Vibr Spectrosc 28:263–275

    Article  Google Scholar 

  23. Zhenxing Y, Ji Z, Longtu L, Hongguo Z, Zhilun G (2000) J Magn Magn Mat 208:55–56

    Article  Google Scholar 

  24. Lobree LJ, Ch Hwang I, Reimer JA, Bell AT (1999) Catal Lett 63:233–240

    Article  Google Scholar 

  25. Hadjiivanov K, Knozingera H, Tsyntsarskib B, Dimitrov L (1999) Catal Lett 62:35–40

    Article  Google Scholar 

  26. Busca G, Lorenzelli V (1982) Mater. Chem 7:89–126

    Article  Google Scholar 

  27. Mali A, Ataie A (2005) Scr Mater 53:1065–1070

    Article  Google Scholar 

  28. Yu HF, Lin HY, Magn J (2004) Magn Mater 283:190–198

    Article  Google Scholar 

  29. Chakrabarti N, Maiti HS (1997) Mater Lett 30:169–173

    Article  Google Scholar 

  30. Subba Rao GV, Rao CNR, Ferraro JR (1970) Appl Spectrosc 24:436–445

    Article  Google Scholar 

  31. Jitaru I, Berger D, Fruth V, Novac A, Stanica N, Rusu F (2000) Ceram Inter 26:193–196

    Article  Google Scholar 

  32. Zheng W, Pang W, Meng G, Peng D (1999) J Mater Chem 9:2833–2836

    Article  Google Scholar 

  33. Fu YP, Wang HCh, Ouyang J (2011) Int J Hydrogen Energy 36:13073–13082

    Article  Google Scholar 

  34. Jiang SP, Liu L, Ong KP, Wu P, Li J, Pu J (2008) J Power Sources 176:82–89

    Article  Google Scholar 

  35. Mitchell BS (2004) An introduction to materials engineering and science for chemical and meterials engineers. Wiley, Canada

    Google Scholar 

  36. Fu YP, Wang HC (2011) Int J Hydrog Energy 36:747–754

    Article  Google Scholar 

  37. Kang M, Yun J, Cho C, Kim C, Tai W (2013) J Inorg Non-Metall Mat 3:37–42

    Google Scholar 

  38. Tian C, Chan SW (2000) Solid State Ionics 134:89–102

    Article  Google Scholar 

  39. Tai LW, Nasrallah MM, Anderson HU, Sparlin DM, Sehlin SR (1995) Solid State Ionics 76:273–283

    Article  Google Scholar 

  40. Xu Q, Huang DP, Chen W, Lee JH, Wang H, Yuan RZ (2004) Scr Mater 50:165–170

    Article  Google Scholar 

  41. Lu S, Yu B, Meng X, Zhao X, Ji Y, Fu C, Zhang Y, Yang L, Fan H, Yang J (2015) J Power Sources 273:244

    Article  Google Scholar 

  42. Makhloufi S, Omari M (2016) J Inorg Organomet Polym 26:32–40

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahmoud Omari.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chadli, I., Omari, M., Abu Dalo, M. et al. Preparation by sol–gel method and characterization of Zn-doped LaCrO3 perovskite. J Sol-Gel Sci Technol 80, 598–605 (2016). https://doi.org/10.1007/s10971-016-4170-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-016-4170-5

Keywords

Navigation