Skip to main content
Log in

Effects of LaNiO3 buffer layer on improving the dielectric properties of barium strontium titanate thin films on stainless steel substrates

  • Original Paper: Sol-gel and hybrid materials for dielectric, electronic, magnetic and ferroelectric applications
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

LaNiO3 (LNO) buffer layer was introduced into barium strontium titanate (BST) thin films deposited on stainless steel (SS) substrates by the sol–gel technique. Results show that the crystallization temperature of BST thin films is decreased from 750 to 720 °C by introducing LNO conducting oxide layer. Simultaneously, the suffered thermal stress for BST films is depressed as SS is a “compressive” substrate. Furthermore, the dielectric loss is notably decreased especially at 103–105 Hz, and the tunability is improved from 24.0 to 26.6 % under the field of 300 kV/cm, because the strain is reduced as characterized by the XRD and Raman spectra. The leakage current density of BST thin films is also significantly decreased by LNO layer, and its mechanism is analyzed. Such results imply that it is worthwhile to introduce LNO buffer layer for BST films on metal substrates to improve their dielectric properties by reducing the misfit strains, especially for “compressive” substrates.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Tagantsev AK, Sherman VO, Astafiev KF, Venkatesh J, Setter N (2003) J Electroceram 11:5–66

    Article  Google Scholar 

  2. Kong LB, Li S, Zhang TS, Zhai JW, Boey FYC, Ma J (2010) Prog Mater Sci 55:840–893

    Article  Google Scholar 

  3. Lee Che-Hui, Orloff Nathan D, Birol Turan, Zhu Ye, Gian Veronica, Rocas Eduard et al (2013) Nature 502:532–536

    Article  Google Scholar 

  4. Sun Xiaohua, Yang Ying, Zhang Qiaoling, Hou Shuang, Huang Caihua, Zongzhi Hu et al (2013) J Am Ceram Soc 96:820–824

    Article  Google Scholar 

  5. Fan Yanhua, Shuhui Yu, Sun Rong, Li Lei, Yin Yansheng, Wong Ka-Wai et al (2010) Appl Surf Sci 256:6531–6535

    Article  Google Scholar 

  6. Huang Shengli, Chen Jianguo, Cheng Jinrong (2015) J Sol Gel Sci Technol 73:278–282

    Article  Google Scholar 

  7. Bose Ankita, Sreemany Monjoy, Bysakh Sandip (2013) Appl Surf Sci 282:202–210

    Article  Google Scholar 

  8. Cao HX, Lo VC, Li ZY (2007) J Appl Phys 101:014113

    Article  Google Scholar 

  9. Zhang J, Cole MW, Alpay SP (2010) J Appl Phys 108:054103

    Article  Google Scholar 

  10. Bhardwaj Chandan, Kuar Davinder (2014) J Alloy Compd 595:158–163

    Article  Google Scholar 

  11. Kariya K, Yoshimura T, Murakami S, Fujimura N (2014) Jpn J Appl Phys 53:09PA14

    Article  Google Scholar 

  12. Liu Liu, Tang Minghua, Tang Zhenhua, Dinglin Xu, Li Linqi, Zhou Yichun (2014) J Cryst Growth 404:136–139

    Article  Google Scholar 

  13. Zhao Xuelian, Jiang Dan, Shengwen Yu, Cheng Jinrong (2012) Rare Met 31:272–275

    Article  Google Scholar 

  14. Zhao Chen, Jiang Dan, Shundong Bu, Cheng Jinrong (2012) MRS Proc 1449:53–58

    Article  Google Scholar 

  15. Zhang Jingji, Zhai Jiwei, Chou Xiujian, Shao Jun, Xiang Lu, Yao Xi (2009) Acta Mater 57:4491–4499

    Article  Google Scholar 

  16. Zhang Yin, Chen Chen, Gao Ran, Xia Feng, Li YueSheng, Che Renchao (2015) Appl Phys Lett 107:182902

    Article  Google Scholar 

  17. Sun Xiaohua, Yang Ying, Zhang Qiaoling, Hou Shuang, Huang Caihua, Zongzhi Hu et al (2013) J Am Ceram Soc 96:820–824

    Article  Google Scholar 

  18. Li Ruguan, Jiang Shuwen, Gao Libin, Li Yanrong (2012) J Appl Phys 112:074113

    Article  Google Scholar 

  19. Liao Jiaxuan, Wei Xubo, Ziqiang Xu, Wei Xiongbang, Wang Peng (2012) Mater Chem Phys 135:1030–1035

    Article  Google Scholar 

  20. Laishram R, Pandey SK, Thakur OP, Bhattacharya DK (2013) J Alloy Compd 579:205–208

    Article  Google Scholar 

  21. Ban Z-G, Alpay SP (2003) J Appl Phys 93:504–511

    Article  Google Scholar 

  22. Sharma A, Ban Z-G, Alpay SP, Mantese JV (2004) Appl Phys Lett 85:985–987

    Article  Google Scholar 

  23. Jia Jianfeng, Huang Kai, Pan Qingtao, He Deyan (2007) J Sol Gel Sci Techn 42:9–12

    Article  Google Scholar 

  24. Yang Hao, Chen Bin, Tao Kun, Qiu Xianggang, Bo Xu, Zhao Bairu (2003) Appl Phys Lett 83:1611–1613

    Article  Google Scholar 

  25. Wang SY, Cheng BL, Wang C, Redfern SA, Dai SY, Jin KJ (2005) J Phys D Appl Phys 38:2253–2257

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant No.51302163) and the Innovational Foundation of Shanghai University (Grant. No.K.10- 0110-13-009).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinrong Cheng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, H., Lu, G., Chen, D. et al. Effects of LaNiO3 buffer layer on improving the dielectric properties of barium strontium titanate thin films on stainless steel substrates. J Sol-Gel Sci Technol 80, 848–852 (2016). https://doi.org/10.1007/s10971-016-4169-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-016-4169-y

Keywords

Navigation