Skip to main content
Log in

The structure and magnetic properties of NiCuZn ferrites sintered via a two-step sintering process

  • Original Paper: Sol-gel and hybrid materials for dielectric, electronic, magnetic and ferroelectric applications
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Fine powders of Ni0.4CuxZn0.6−xFe2O4, where 0≤ x ≤0.25, were prepared by sol–gel auto-combustion method. A two-step sintering process and the traditional final-stage sintering process have been adopted to produce NiCuZn ferrite toroidal specimens. The densification, microstructure, and magnetic properties of the ferrites have been investigated. It has been found that the sample produced by a two-step sintering process has a higher sintered density than the sample produced by the traditional final-stage sintering process, and the former gives rise to a higher initial permeability, especially when x = 0.15. Both the two sintering processes have no impact on Curie temperature which is only dependent on Cu-substituted content. The two-step sintering process is an effective method to produce high-density ferrites with improved soft magnetic properties.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Yu L, Cao S, Liu Y, Wang J, Jing C, Zhang J (2006) Thermal and structural analysis on the nanocrystalline NiCuZn ferrite synthesis in different atmospheres. J Magn Magn Mater 301:100

    Article  Google Scholar 

  2. Yan S, Yin J, Zhou E (2008) Study on the synthesis of NiZnCu ferrite nanoparticles by PVA sol–gel method and their magnetic properties. J Alloys Compd 450:417

    Article  Google Scholar 

  3. Kurlyandskaya GV, Cunanan J, Bhagat SM, Aphesteguy JC, Jacobo SE (2007) Field-induced microwave absorption in Fe3O4 nanoparticles and Fe3O4/polyaniline composites synthesized by different methods. J Phys Chem Solids 68:1527

    Article  Google Scholar 

  4. Matsuo Y, Inagki M, Tomozawa T, Nakao F (2001) High Performance NiZn Ferrite. IEEE Trans Magn 37:2359

    Article  Google Scholar 

  5. Su H, Zhang H, Tang X (2008) Influence of microstructure on permeability dispersion and power loss of NiZn ferrite. J Appl Phys 103:093903

    Article  Google Scholar 

  6. Costa ACFM, Tortella E, Morelli MR, Kiminami RHGA (2003) Synthesis, microstructure and magnetic properties of Ni-Zn ferrites. J Magn Magn Mater 256:174

    Article  Google Scholar 

  7. Han M, Liang D, Deng L (2007) Analyses on the dispersion spectra of permeability and permittivity for NiZn spinel ferrites doped with SiO2. Appl Phys Lett 90:192507

    Article  Google Scholar 

  8. Zahi S, Daud AR, Hashimb M (2007) A comparative study of nickel–zinc ferrites by sol–gel route and solid-state reaction. Mater Chem Phys 106:452

    Article  Google Scholar 

  9. Chen IW, Wang XH (2000) Sintering dense nanocrystalline ceramics without final-stage grain growth. Nature 404:168

    Article  Google Scholar 

  10. Li JG, Ye YP, Shen LY (2006) Densification and grain growth of Al2O3 nanoceramics during pressureless sintering. J Am Ceram Soc 89:139

    Article  Google Scholar 

  11. Maca K, Pouchly V, Zalud P (2010) Two-step sintering of oxide ceramics with various crystal structures. J Eur Ceram Soc 30:583

    Article  Google Scholar 

  12. Qi X, Zhou J, Yue Z (2002) Room temperature preparation of nanocrystalline MnCuZn ferrite powder by auto-combustion of nitrate-citrate gels. Key Eng Mater 224–226:593

    Article  Google Scholar 

  13. Yue Z, Zhou J, Li L (2000) Synthesis of nanocrystalline NiCuZn ferrite powders by sol–gel auto-combustion method. J Magn Magn Mater 208:55

    Article  Google Scholar 

  14. Akther Hossain AKM, Seki M, Kawai T, Tabata H (2004) Colossal magnetoresistance in spinel type Zn1-xNixFe2O4. J Appl Phys 96:1273

    Article  Google Scholar 

  15. Klug HP, Alexander LE (1997) X-ray diffraction procedures for polycrystalline and amorphous materials. Wiley, New York

    Google Scholar 

  16. Ajmal M, Maqsood A (2007) Influence of zinc substitution on structural and electrical properties of Ni1−xZnxFe2O4 ferrites. Mater Sci Eng, B 139:164

    Article  Google Scholar 

  17. Cullity BD (1959) Elements of X-ray diffraction. Addison-Wesley, London, p 325

  18. Akther Hossain AKM, Mahmud ST, Seki M (2007) Structural, electrical transport, and magnetic properties of Ni1-xZnxFe2O4. J Magn Magn Mater 312:210

    Article  Google Scholar 

  19. Rezlescu E, Sachelarie L, Popa PD, Rezlescu N (2000) Effect of substitution of divalent ions on the electrical and magnetic properties of Ni-Zn-Me ferrites. IEEE Trans Magn 36:3962

    Article  Google Scholar 

  20. Su H, Zhang H, Tang X (2004) High-permeability and high-curie temperature NiCuZn ferrite. J Magn Magn Mater 283:157

    Article  Google Scholar 

  21. Kingery WD (1976) Introduction to ceramics. Wiley, New York

    Google Scholar 

  22. Su H, Tang X, Zhang H, Zhong Z, Shen J (2011) Sintering dense NiZn ferrite by two-step sintering process. J Appl Phys 109:07A501

    Google Scholar 

  23. Shirsath SE (2010) Doping effect of Mn2+ on the magnetic behavior in Ni–Zn ferrite nanoparticles prepared by sol–gel auto-combustion. J Phys Chem Solids 71:1669

    Article  Google Scholar 

  24. Roy PK, Bera J (2006) Effect of Mg substitution on electromagnetic properties of (Ni0.25Cu0.20Zn0.55)Fe2O4 ferrite prepared by auto combustion method. J Magn Magn Mater 298:38

    Article  Google Scholar 

  25. Shrotri JJ, Kulkarni SD, Deshpande CE, Dtate SK (1999) Effect of Cu substitution on the magnetic and electrical properties of Ni-Zn ferrite synthesised by soft chemical method. Mater Chem Phys 59:1

    Article  Google Scholar 

  26. Dimri MC, Verma A, Kashyap SC, Dubea DC, Thakur OP, Prakash C (2006) Structural, dielectric and magnetic properties of NiCuZn ferrite grown by citrate precursor method. Mater Sci Eng, B 133:42

    Article  Google Scholar 

  27. Visser EG, Johnson MT (1991) A novel interpretation of the complex permeability in polycrystalline ferrites[J]. J Magn Magn Mater 101(1):143–147

    Article  Google Scholar 

  28. Globus A, Monjaras R (1975) Influence of the deviation from stoichiometry on the magnetic properties of Zn-rich NiZn ferrites[J]. IEEE Trans Magn 11(5):23

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by National Natural Science Foundation of China (under Grant No. 51271130).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhi Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, B., Wang, Z. The structure and magnetic properties of NiCuZn ferrites sintered via a two-step sintering process. J Sol-Gel Sci Technol 80, 840–847 (2016). https://doi.org/10.1007/s10971-016-4162-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-016-4162-5

Keywords

Navigation